VLSI DESIGN LAB
R20 Regulation

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING,

Lakireddy Bali Reddy College of Engineering (AUTONOMOUYS),
L.B.Reddy Nagar, MYLAVARAM - 521230.

VLSI DESIGN LAB
LIST OF EXPERIMENTS

PART-1: VLSI FRONT END DESIGN USING XILINX TOOL:
1. Implementation of Carry-Look-Ahead adder.

2. Implementation of 4 X 4 Array Multiplier.

3. Implementation of a 4-bit ALU.

4. Implementation of Zero /One Detector.

5. Implementation of flip flops: SR, D, JK, T.

PART-2: VLSI BACK END DESIGN USING CADENCE/MENTOR GRAPHICS TOOLS:
PART-2.1: Full Custom Design:

1. Design and analysis of NMOS Inverter.

2. Design and analysis of CMOS Inverter

3. Design and analysis of CMOS NOR gate.

4. Design and analysis of CMOS NAND gate.

5. Design and analysis of CMOS D- Flip Flop

PART-2.2: Semi Custom Design

1. Design and analysis of Full Adder

2. Design and analysis of Decoder

3. Design and analysis of 8- bit Binary Counter

4. Design and analysis of Shift Register

5. Design and analysis of Sequence Detector Note: Minimum of 3 experiments from part-1 and

Implementation of Carry-Look-Ahead adder EXPNO -1

DATE:

AIM: To design and simulate carry-look- a head adder using Xilinx's VIVADO and its implementation on Zed
board Evaluation and Development Kit

COMPONENTS & TOOLS REQUIRED:

Target devices: Xilinx Zyng-7000- Zed board Evaluation and Development Kit/Zybo board
Tools: Xilinx VIVADO suite

Preferred language- Verilog

THEORY:

DESIGN OF CARRY LOOKAHEAD ADDERS :

To reduce the computation time, there are faster ways to add two binary numbers by using carry lookahead
adders. They work by creating two signals P and G known to be Carry Propagator and Carry Generator. The
carry propagator is propagated to the next level whereas the carry generator is used to generate the output carry,
regardless of input carry. The block diagram of a 4-bit Carry Look ahead Adder is shown here below

A3 B3 AD B2 Al B1 AD Bo
1-bit
Full
Adder
51
P3 G3 C3 P2 G2 2 P1 G1 &1
-
C4q 4—bit carry ook ahead generator

The corresponding boolean expressions are given here to construct a carry lookahead adder. In the carry-look
ahead circuit we need to generate the two signals carry propagator(P) and carry generator(G),

Pi=Ai @ Bi (1)
Gi=Ai- Bi (2)
The output sum and carry can be expressed as

Sumi=Pi @ C;(3)
Cis1=Gi+ (Pi-Cj) (@)

Using equation(4) the Boolean function for the carry output of each stage is obtained as
Ci=Go+Po-Co

Co=G1+P1-C1=G1+P1-Gp+P1-Po-Co
C3=G2+P2-C2=G2P2-G1+P2-P1-Go+P2-P1-Po-Co
Cs=G3+P3-C3=G3P3-G2P3-P2-G1+P3-P2-P1-Go+P3s-Pz-P1-Po-Co

The carry-look ahead 4-bit adder can also be used in a higher-level circuit by having each CLA logic circuit
produce a propagate and generate signal to a higher-level CLA logic circuit.

VERILOG PROGRAM:
module Carry_look_ahead(
input [3:0] a,b,
output [4:0] s
);
wire [4:0] c;
wire [3:0] g,p,sum;
/I Generate signals
assign g[0] = a[0] & b[0],9[1] = a[1] & b[1],9[2] = a[2] & b[2],9[3] = a[3] & b[3];
Il Propagate signals
assign p[0]=a[0]"b[0],p[1]=a[1]"b[1],p[2]=a[2]"b[2],p[3]=a[3]"b[3];
/I Create the carry terms
assign c[0]=1'b O;
assign c[1]= g[0] |(p[0] &c[O]);
assign c[2]=g[1] |(p[1] &c[1]);
assign c[3]=9[2] |(p[2] &c[2]);
assign c[4]=9[3] |(p[3] &c[3]);
full_adder fal(a[0],b[0],c[0],sum[0]),
fa2(a[1],b[1],c[1],sum[1]),
fa3(a[2],b[2],c[2],sum[2]),
fad(a[3],b[3],c[3],sum[3]);
assign s= {c[4],sum};
endmodule
// Full adder module
module full_adder(
input a,
input b,
input cin,
output y,
output co
);
assign y = a"b”cin, co = a&b|b&cin|cin&a;
endmodule

TEST BENCH PROGRAM:
module test_clal();
reg [3:0] a,b;
wire [4:0] s;
Carry_look_ahead 11(a,b,s);
initial
begin
a=4ho;
b= 4'h 0;
end
always

begin

#3 a=a+4'h 1;
#3b=b+4h1;
end

endmodule

PROCEDURE:

1. Double click on the Vivado2017.2 icon on your desktop to open up the welcome window of the
development tool (as shown below). Three main sections can be observed in this window: “Quick Start”,
“Tasks”, and “Learning Center”.

¢ Vivado 20174 =) X

File Flow Tools Window Help

T U £ XILINX

HLx Editions LL PROGRAMMABLE

Quick Start

Create Project »
Open Project

Open Example Project

Tasks

Manage IP >
Open Hardware Manager >

Xilinx Tcl Store >

Learning Center

Documentation and Tutorials

Tel Console

2. Now, click on “Create Project” to create a new project. You have to be careful about where to save your
project file .

+" Vivado 2017. 3 =

‘ Create a New Vivado Project
A g £ XILINX
Vl\/ DO. VIVADO This wizard will guide you through the creation of a new project -~

HLy Editions HLx Editions ALL PROGRAMMABLE.
To create a Vivado project you will need to provide a name and a location for your project files. Next, you
will specify the type of flow you'll be working with. Finally, you will specify your project sources and
choose a default part

Quick Start

Manage IP >

“

Einish Cancel

Tcl Console

Rl Drain e Wiizard will auidn ni thraiak Hia nrasase of malnrtinn Ancinm e aneene and 2 farnnt dsies fae = e eninet

3. Click on NEXT and type project name, project location click on NEXT
[Vivado20172] =

File Flow Tools Window Help |‘ New Project E

Project Name

Vl\/ADO Enter a name for your project and specify a directory where the project data files will be stored [8 XlLINX

HLx Editions ALL PROGRAMMABLE..

projectname: | ExP1 |

Q u | Ck Sta rt Projectlocation: E:/VLSI E

| Create project subdirectory

Project will be created at: EXVLSIEXP1

Tcl Console

4. In the next window, choose “RTL Project” as the project type. (click on select button), click on NEXT

New Project

Project Type
Specify the type of projectto create.

e, RTL Project
You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

Do not specify sources at this time

Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning and
implementation.

17O Planning Project
Do not specify design sources. You will be able to view part/package resources.

Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File.

Exampie Project
Create a new Vivado project from a oredefined template.

5. Click on Boards:
I. vendor:em.avnet.com
ii. Display Name: Zed board Evaluation and Development Kit.
iii. Board Rev : Latest

click on NEXT,FINISH

1 ivado 20

File Flow Tools Window Help l' New Project E

Cancel

Default Part

VlVA DO Choose a default Xilinx part or board for your project. This can be changed later. [

HLx Editions

Select hPats | [Boards

QL,HCk Start > Fiter! Preview

Vendor, em.avnet.com v

Display Name: | ZedBoard Zyng Evaluation and Devel.. v

Board Rev. Latest v
Reset All Filters

Search: | Q. v

Display Name Vendor BoardRev Part
Ta S kS [ZedBoard Zyng Evaluation and Development Kit em.avnetcom d 18 xc72020cig484-1
Manage IP >
Open Hardware Manager >
Xilinx Tcl Store > < 4

No Board Connectors

Tcl Console

6. Click on plus symbol(Add source)

& XILINX

ALL PROGRAMMABLE.

| Exe1 - [EVLSUEXP1/ERP apr] - Vivado 2017
File Edit Flow Tools Window Layout Wiew Help Quick Access Ready
= + >, HIE « BN Default Layout v
Flow Navigator SRS PROJECT MANAGER - EXP1 ? X
~ PROJECT MANAGER M
Sources ?_00X Project Summary 200X
ﬂ' Seftings =
Q /s + o
Add Sources Seftings Edit
Ny Templat Design Sources =
anguage Templates .
guag P + & Constraints Project name EXP1
1} IP Catalog ~ = Simulation Project location: E:NVLSIEXP1
Hierarchy Product family Zymg-7000
v IPINTEGRATOR Project part ZedBoard Zynq Evaluation and Development Kit (xc72020clg484-1)
Create Block Design Properties ? _00 X Top module name: Mot defined
Target language: Verilog
&
Simulator language; Wixed
Selectan objectto see properies
v SIMULATION Board Part o
Run Simulation
TclConsole | Messages | Log |Reports | DesignRuns X ?_00
¥ RTLANALYSIS Q = £ %
> Open Elaborated Design Mame Constraints ~ Status WNS TNS WHS THS TPWS TotalPower FailedRoutes LUT FF BRAMs URAM DSP Stat Elapsed Strategy
~ [synth_1 constrs_1 Not started Vivado Synthe
v SYNTHESIS impl_1 constrs_1 Not started Vivado Impler

P Run Synthesis

> Open Synthesized Design

~ IMPLEMENTATION

P Runimplementation

7. Click on Add or create design source and NEXT .In the opened window, you can create source file
(Verilog/Verilog Header/SystemVeilog) for your new project or add sources from the existing projects.

eate File”, and in the opened window .

Cl on

(13

Cr

XP1 - [EV ['Tiel{- {P1.xpr]
File Edit Flow Tools Window
= « >

4 4
Flow Navigator 872 W

v PROJECT MANAGER
£} Settings
Add Sources
Language Templates

4F IP Catalog

v IPINTEGRATOR

Create Block Design

Vv SIMULATION

Run Simulation

Vv RTLANALYSIS
> Open Elaborated Design

Vv SYNTHESIS
P Run Synthesis

> Open Synthesized Design

Vv IMPLEMENTATION

B Rin Imnlementatinn

Layout

View Help Q- Quick Access

- W

¢ Add Sources

- e

Ready

== Default Layout v

VIVADO!

Add Sources

HLx Editions
Add or create constraints
* Add or create design sources

Add or create simulation sources

& NLINX

(2)
&

This guides you through the process of adding and creating sources for your project

Cancel

020clg484-1)

¢

8. Click on Create file and type the file name
The opened window is the main environment for your project that is called “Project Manager”. You can
explore it by seeing the options of each category in the toolbar on top of the window. In the left side,
you can see the “Settings”, “Add Sources”, “’Language Template”, “IP Catalog”, “IP Integrator”,
“Simulation”, “RTL Analysis”, “Synthesis”, “Implementation”, and “Program and Debug”. Each of

DSP Start

200X

Elapsed Strategy
Vivado Synthi

Vivado Imple

6

these serves a part of the digital design flow. In the middle, you can see the windows for “Sources”,
“Properties”, “Project Summary”, and the reports and summaries for the execution of the project files.

al X

2017 =
Ready

File Edit Flow Tools Window Layout VWiew Help Q- Qui

E‘ - > !E g 3% == Default Layout v

of
Flow Navigator 2 4 AddSources o = 2?0

~ PROJECT MANAGER Add or Create Design Sources

200X
£ setiings Specify HOL, netlist, Block Design, and IP files, or directories containing those file types to add to your project Create a new source file on ‘ ~
disk and add it to your project.
Add Sources

Language Templates

¥ IP Catalog +‘

~ IPINTEGRATOR 20clg424-1)
Create Block Design
Open Block Design Use Add Files, Add Directories or Create File buttons below

Generate Block Design

v SIMULATION -

Run Simulation

Add Files H Add Directories H Create File 2 — [l 5]

¥ RTLANALYSIS

> Open Elaborated Design Start Elapsed Strategy

Vivado Synth

Search forinclude files and add them into your project directory

¥ SYNTHESIS Vivado Imple

P Run Synthesis

®
> Open Synthesized Design ~

~ IMPI FMENTATION

| X1 - [ENVLSUEXP.
Eile Eait Flow Tools Window Layout View Help
=, ~ [I - >4 == Default Layout

~
= 4 Add Sources. =
Flow Navigator = = 2 _ [2 x

~ PROJECT MANAGER Add or Create Design Sources 200 %
£+ Settings Specify HDL, netlist, Block Design, and IP files, or directories containing those file types to add to your project. Create a new source file on s ~
disk and add it to your project.

Ready

Add Sources

Language Templates

LF P Catalog +; ¢ Create Source File

Create a new source file and add itto your
project. [

<

IP INTEGRATOR E020cig484-1)

Create Block Design

Eile type: @ verilog

File name: | ExP1|

~ SIMULATION Filg location: | & <Local to Project> ~

Run Simulation =

~ RTLANALYSIS

> Open Elaborated Design o Hoaicn DSP Start Elapsed Strategy
- Vivado Synthe
~ SYNTHESIS Vivado Impler

® es :

» Run Synthesis

> Open Synthe

~ IMPLEMENTATION

» RunImplementation < >

9. Type the program

101 EMSDRyBELp]- Ve 00 I T T -

File Edt Flow Tools Window Layout View Help - QuickAccess Ready
= « BE B X r, LI - T == Default Layout v
Flow Navigator PROJECT MANAGER - EXP1 2
“ PROJECT MANAGER a
Sources ?2_00X Project Summary % | EXP1v X 200
£ Settings
Q T & + & ENLSVEXP1/EXP.sres/aources_1inewEXP1v X
Add Sources
~ [~ Design Sources (1 ~1aQ -~ X B O/ B0
Language Templates ; .
» @, Carry_look_ahead (EXF 1) (4) 1) nodule Carry_look ahead -~
1 1P Catalog » [Constraints b input [3:0] a,b,
output [4:0] 3
Hierarchy = Libraries Compile Order)
v IPINTEGRATOR vire [5:0]
Create Block Design Source File Properties ?2_00BX
Open Block Design @ EXPy el assign g[0] = a[0] & B[0],q[1] = a[1] & b[1],q[2] = a[2] s b[2],q[3] = a[3] & B[3];
5
Generate Block Design & : —a[114 2121 —a[3]"B[3]:
/| Enabled o 1.p[1)=a[1]"B[1],p[2]=2[2]"b[2],p[3]=a[3) "B[3];
v 11, '/ Crea carry terms
v SIULATION General | Propertes 12 oam clol=1's 0z >v
Run Simulation
TclConsole | Messages |Log | Reports | DesignRuns x ?-00
v RTLANALYSIS Q z £ + %
> Open Elaborated Design Name Constraints ~ Status WNS TNS WHS THS TPWS TotalPower FaledRoutes LUT FF BRAMs URAM DSP Stat Elapsed Strategy
~ [synth_1 constrs_1 Not started Vivado Synthi
v BYNTHESIS [>impl_1 constrs_1 Mot started Vivado Imple
P RunSynthesis
> Open Synthesized Design
Vv IMPLEMENTATION
P RunImplementation o >

10. Click on plus button(Add sources) and select Add or create simulation sources and NEXT

Eile

Edit Flow Tools Window
=

|
5
 PROJECT MANAGER N
£* Settings

Add Sources
Language Templates

<F |P Catalog

<

IP INTEGRATOR

Create Block Design

<

SIMULATION

Run Simulation

<

RTL ANALYSIS

> Open Elaborated Design

<

SYNTHESIS

» Run Synthesis

> Open Synthe:

Design

Layout View Help Q Ready
B 2= Default Layout v
4. AddSources == r 2 X
Add Sources 200
P ?
VIVADO This guides you through the process of adding and creating sources for your project x
HLx Editions
Add or create constraints
~l
Add or create design sources
. Add or create simulation sources
2] = b[2],g[3] = a[3] & b[3];
3]=a[3]"b[3];
>
oy af
- If DSP Start Elapsed Strategy
& XILINX Vado Syne
s Vivado Impler
® :

IMPLEMENTATION

» Run Implementation

11. Click on the Create file and type the file name

b et SRR Viedo 20 2 = |

File Edit Flow Tools Window Layout View Help | O Qul —
: -

4 h‘ 'u - == Default Layout -

Flow Navigator z & ¢ Add Suurces. - =

~ PROJECT MANAGER Add or Create Simulation Sources

700
£ Settings Specify simulation specific HOL files, or directeries containing HDL files, to add to your project. Create a new source file on disk and add it ‘
to your project. X
Add Sources
Language Templates
1

Specify simulation set | k= sim_1 v

1 IP Catalog
¥ IPINTEGRATOR

Create Block Design

Open Block Design 2] = b[2],9[3] = a[3] & b[3]:
Use Add Files, Add Directories or Create File buttons below
Generate Block Design 3)=a[3]*b[3];

~ SIMULATION

Run Simulation Add Files ‘ ‘ Add Directories ‘ | Create File

Scan and add RTL include files into project
¥ RTLANALYSIS

> Open Elaborated Design

Ii DSP Stat FElapsed Strategy

td
+ Include all design sgurces for simulation Vivado Syntt
v SYNTHESIS Vivado Imple
P Run Synthesis
> Open Synthesized Design @ bledt - Enish
~ IMPLEMENTATION
P Run Implementation < >

§ EXPL- [E/VLSI/EXP:

File Edit Flow Tools Window Layout

5 B8 T

4 == Default Layout v

()
Flow Navigator B ¢ Add Sources iy 2 X

v PROJECT MANAGER
£ Settings

View Help

Q- Quick Access

Ready

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HDL files, to add to your project. Create a new source file on disk and add it ‘

to your project. X
Add Sources youreres

Language Templates ja)

4 IP Catalog

<

IP INTEGRATOR
Create Block Design
Open Block Design

Generate Block Design

<

SIMULATION

Run Simulation

<

RTL ANALYSIS
> Open Elaborated Design

<

SYNTHESIS
P Run Synthesis

Open Synthesized Design

Specify simulation set | & sim_1
1’

Create Source File

[

+

4

de files intal

Create a new source file and add it to your
project.

File type: @ Verilog

File name: | EXP1_TEST|

Filg location: ~ & <Local to Project=

v

Finish
Finish

[2] & b[2],g[3] = a[3] & b[3];

[3]=2[3]"b[3];

DSP Start Elapsed Strategy
Vivado Synthe
Vivado Impler

<

IMPLEMENTATION

P RunImplementation

12. Type the test bench program and save

EXP1- [E/VLSIEXP:

Eile Edit Flow Tools Window Layout View Help Q- Qu Ready
=, BEE X » B o X ¥ =2 Default Layout v
Flow Navigator PROJECT MANAGER - EXP1 ? X
~ PROJECT MANAGER)
Sources ?2 00X Project Summary x| EXP1lv x| EXP1_TESTv X 200
£} Settings
Q T = 4+ -3 E:NLSIEXP1/EXP1 sreslsim_1inew/EXP1_TEST v X
Add Sources
v sim_1(2) “la ¥ B B /N = Q
Language Templates .
~ = Mon-module Files (1 1 ~
<F IP Catalog @ EXP1_TESTv <
Hierarchy Libraries Compile Order
v IPINTEGRATOR
Create Block Design Source File Properties ? 00X
Open Block Design @ EXP1_TESTwv - -3
Generate Block Design -~
/| Enabled
v SIMULATION General Properies < > h
Run Simulation
Tcl Console Messages Log Reports Design Runs x 2 _00O
~ RTLANALYSIS Q = = + %
> Open Elaborated Design Name Constraints Status WNS TNS WHS THS TPWS Total Power FailedRoutes LUT FF BRAMs WURAM DSP Stat Elapsed Strategy
~ [> synth_1 constrs_1 Mot started Vivado Synthe
¥ SYNTHESIS > impl_1 constrs_1 Mot started Vivado Impler
P Run Synthesis
> Open Synthesized Design
¥ IMPLEMENTATION
P Run Implementation o e >

13. Run simulation -> click on Run behavioral simulation

1oL By BeLpl- Vo 1172 A - ol

File Edit Flow Tools Window Layout View Help ~ ©b Ouick Ready
ﬂ‘ b‘ [- M = Default Layout v
Flow Navigator PROJECT MANAGER - EXP1 ? X
v PROJECT MANAGER A :
urces ? - X roject Summary X vy X | TESTv X ?
s So ?_00 Project § EXP1 EXPA_TEST. 200
Settings
QI £ + £ ENLSUEXPYEXPA srcsisim_tinew/EXP1_TESTY X
Add Sources
y Constraints & Q - X] E ij [[EE Q
Language Templates . ! o !
Simulation Sources (1) 1| module est_clal(): N |
T 1P Catalog 2 reg [3:0] a,b;
" e A 3 wire [£:0] 3:
jerarchy | Libraries Compile Order . Carry_look shead 11(z,b,s);
¥ |PINTEGRATOR 5 initial
Create Block Design Source File Properties ?_00X € Iegin
70 a=4n0;
Open Block Design @ EXP1_TESTV - £ ; b= 4'h0;
1 end
Generate Block Design = : alvays
+/ Enabled !
. 2 11) Legin
v SIMULATION General Properties 2 3 #3 a=atl'h 1:)v
Run Simulation
Log Reports | DesignRuns x 200

Run Behavioral Simulation

v RTL ANALYSIS { + %
> OpenElaf nls Status WNS TNS WHS
i Not started
v SYNTHESIS i Notstared
P RunSynth

> Open Synthesized Design

¥ IMPLEMENTATION

» RunImplementation ¢

14. SIMULATION OUTPUT:

THS TPWS Total Power FailedRoutes LUT FF BRAMs URAM DSP Stat Elapsed Sirategy
Vivado Synthe

Vivado Impler

10

o T

EXP1- [E/VLS/EXPL/EXP1.xpr] - Vivado 2017.2

Eile Edit Flow Tools Window Layout View Run Help Ready
=, B L - I X ¥ 4 » x 10 us v X c Default Layout v
Flow Navigator SIMULATION - Behavioral Simulation - Functional - sim_1 - test_clat
v PROJECT MANAGER
Untitled 1
£+ Settings
2o +T L]

Add Sources
Language Templates

T IP Catalog

<

IP INTEGRATOR

Create Block Design

<

SIMULATION

Run Simulation

<

RTL ANALYSIS

> Open Elaborated Design

<

SYNTHESIS
P Run Synthesis

5 0

<

IMPLEMENTATION

P Run Implementation

2
o

Tcl Console | Messages Log

Sim Time: 1us

15.Click on RTL Analysis -> open elaborate designs(click on 1/0O ports)

¢ EXP1- [E/VLS/EXPL/EXPLxpr] - Vivado 2017.2

[T e S

FEile Edit Flow Tools Window Layout View Help Ready
V'." - -] P‘ |- | O = Default Layout v
Flow Navigator ELABORATED DESIGH - xc7z020clg484-1 (active
~ PROJECT MANAGER M
Netlist Schematic
£+ Settings
= H & - a a xN k © C 7cells 1310Ports 26 Nets &
Add Sources
(2 Carry_look_ahead [~
Language Templates N Nets (26]
IF P Catalog > LeafCells (14
> [@ fat(
~ P INTEGRATOR D - —
R ~ LAY a1 5 udi 5
Create Block Design wan II:D_‘ l[:D_‘ ll:D—‘
_D—‘ 'll:D d
De. Simulation Scope Properties) Lu N) y |:D_|
De o

<

SIMULATION

Run Simulation

<

RTL ANALYSIS
~ Open Elaborated Design
[] Report Methodology
Report DRC
Report Moise

*4 Schematic

Vv SYNTHESIS

) Reference name: RTL_AND Type: RTL Gate
= E—

Name Constraints

- synth_1 constrs_1

impl_1 constrs_1

<

Status WNS TNS
ot started
Mot started

Design Runs
+ %

WHS THS TPWS Total Power FailedRoutes LUT FF BRAMs URAM DSP Start

Elapsed

Strategy
Vivado Synthe

Vivado Impler

16.

m

Assign port packages(assign pin number) and 1/O std (select LVCMOS33)

INPUT PIN NUMBERS

OUTPUT LED PIN NUMBERS

11

SWO0

F22

LDO

T22

Swi1

G22

LD1

T21

SW2

H22

LD2

u22

SW3

F21

LD3

uz21

SW4

H19

LD4

V22

SW5

H18

LD5

W22

SW6

H17

LD6

u19

SW7

M15

LD7

Ul4

17.Save and type the XDC File name

¥ EXP1- [ENLS/EXPL/EXPLxpr] - - iz
File Edit Flow Tools Window Layout View Help Quick Acce: Ready
E‘ W o+« B X = }‘ LI | 8 Z ¥ Default Layout v
Flow Navigator = (45 ELABORATED DESIGN * - xc72020cig484-1 (active) ? X
~ PROJECT MANAGER A
Sources | Netlist x ?2_00C Project Summary x| Schematic x EXP1v X EXP1_TESTv X 200
ﬂ- Settings
= H - @ Qe ¥ o = C 17Cells 1310Pots 28 Nels o
Add Sources
2 Ccarry_look_ahead ~ -
Language Templates > Nets (26) %’»l
F P Catalog > [Leaf Cells (14)
w
> [@ fat (full_adder) E
v P INTEGRATOR > [fa2 (full_adder D —
N = B v 2 i X1 wdi R =)
Create Block Design g o . >
I]
R o e S :D_'\:Ij—\\:D—IZES—I ’EB—
Generate Block Design i s[4] - & N
‘ .
v SIMULATION General | Properties Configure
Run Simulation
TclConsole | Messages | Log | Reports | Design Runs | Find Results % ?2_00
~ RTLANALYSIS QA @
* Open Elaborated Design .. ' Directon BoardPar. BoardPartinterf.. Interf.. NegDif.. Package.. Fi. B.. l0Std Veco .. DriveStre.. SlewType Pull Type Off-
} b b[3] N M5 v v 34 LVCMOS3¥ v 3300 NONE v NO -~
Report Methodology X
s8] outT T22 v v 33 LVCMOS33” v 3300 12 v SLOW v NONE v~ FP.
Report DRC @[] ouT T v v 33 LVCMOS33 ~ 3300 12 ~ SLOW <~ NONE v FP,
Report Noise Wsf2] ouT U2 v v 33 LVCMOS3¥ v 3300 12 ~ SLOW v NONE v FP_
M Schematic s out uz1 v v 33 LVCMOS33® v 3300 12 v SLOW v NONE % FP.
<dsld] ouT V2 v | v 33 LVCMOS33* ~ 3300 12 ~ SLOW ~ NONE v FP_
X T — 2N
¥ SYNTHESIS 10 Ports in"Schematic' (13)
B Nuie Oumdnmin hnd

18. Run the Implementation and select generate bit stream click OK

12

i o s T | 5 |

Eile Edit Flow Tools Window Layout View Help Q- Quicl Implementation Complete s
=, B X o »p B X o = ¥ == Default Layout v
Flow Navigator ELABORATED DESIGN - xc7z020clg484-1 (active) ? X
Generate Block Design [~
Sources | Netlist x 00 Project Summary x| Schematic x EXP1v x| EXP1_TESTv X 200
v SIMULATION = A] - Q a H X O = C 17cCels 1310Ports 26Mets &
Run Simulation G2 camy_look_shead et =
s N
> [Nets (26) Implementation Completed === B
~ RTL ANALYSIS > Leaf Cells (14)
~ Open Elaborated Design > [@ fa1 (full_adder)

o Implementation successfully completed.
> [B] fa2 (full_adder)

—

[¥) Report Methodology - } } } [':D—L
Hext)—‘

Report DRC 1i0 Port Properties T a) I'

Open Implemented Design) L1 Ct l:D—I

Report Noise < s[4]
@ Generate Bitstream
¥4 schematic
Mame: sl View Reports
General Properties Configure
v SYNTHESIS Don't show this dialog again
P Run Synthesis TclConsole | Messages | Log | Reps ?2_0C0C
> Open Synthesized Design Q !H @
. 1 Direction BoardPart. Board d Veco . Drive Stre... Slew Type Pull Type Off-
v IMPLEMENTATION b3 N ~ CMOS33* - 3300 NONE ~ NO A
> Run Implementation s ouT T22 v v 33 LVCMOS33* ~ 3300 12 - SLOW <~ NONE ~ FP_
> Open Implementes Design @sH] ouT T21 v v 33 LVCMOS33* ~ 3300 12 ~ SLOW <~ NONE ~ FP,
@sfe] ouT U2 ¥ v 33 LVCMOS33" ~ 3300 12 -~ SLOW <~ NONE % FP,
@s@E ouT Uzt v v 33 LVCMOS33" - 3300 12 - SLOW <~ NONE ¥ FP
v PROGRAM AND DEBUG
@s@] OUT V22 v /33 LVCMOS33® ~ 3300 12 * SLOW <~ NONE ¥ FP__
it Generate Bitstream < 5
> Open Hardware Manager /0 Ports in "Schematic’ (13)

I 001 - Evsyp B Viede o172 N 2 x
File Edit Flow Tools Window Layout View Help write_bitstream Complete v
E‘ =] X > }‘ i | ¥ 22 Default Layout v
Flow Navigator ¥ A ELABORATED DESIGH - xc72020c|g484-1 (active) ? X

Generate Block Design [~
Sources | Netlist ?2_00 Project Summary X | Schematic X EXP1lv X EXP1_TESTv X 200
v SIMULATION I Hq & - @ Q 4 X © = C 17Cels 1310Pors 26 Nets &
Run Simulation R g N i
B Camy_look_shead Bitstream Generation Completed u
>[5 Nets (26) L
~ RTLANALYSIS H Leaf Gells (14) -
» @ fal (full_adder) o Bitstream Generation successfully completed.
' Open Elaborated Design (full_adde '_:D,—
. > [@ fa2 (full_adder) —
Report Methodology Next a2 - '~ = o
— -l
Report DRC i Port Praperties Qpen Implemented Design . w
Report Noise @ si4 View Reports —T I_D_‘\:D_ I
1 schematic CNeme s (®) Open Hardware Manager A 5'"
General = Properties Configure Generate Memory Configuration File
v SYNTHESIS
p Run Synthesis TclConsole | Messages | Log | R Dont show this dialog again > _0o@
» Open Synthesized Design
QM 6
A1 Direction Board Part Ii Veeo Drive Stre SlewType Pull Type Off-
~ IMPLEMENTATION b3 N =— = A0 3300 NONE » NO~
P Runimplementation 0] ouT T2 v v 33 LVCMOS33* 3300 12 v SLOW ~ NONE ¥ FP_
3 OpenImplementsd Design s ouT T21 v ¥ 33 LVCMOS3¥ 3300 12 ~ SLOW <~ MNONE v FP_
sfz] outT U2 v v 33 LVCMOS33* 3300 12 v SLOW ~ NONE ¥ FP_
s[E ouT u21 v v 33 LVCMOS33 3300 12 v SLOW ~* NONE v FP_
Vv PROGRAM AND DEBUG
sl ouT V22 v v 33 LVCMOS33* > 3300 12 v SLOW ~ NONE v FP_,
i Generate Bitstream ¢)
» Open Hardware Manager li0 Ports in *Schematic’ (13)

20.Connect the Hardware kit (Ex: ZedBoard) and Click on Open Target -> auto connect

13

¢ EXP1- [E/VLSV/EXP1/EX

File Edit Flow Tools Window Layout View Help write_bitstream Complete «
E‘ P‘ L - BN = Default Layout v
Flow Navigator HARDWARE MANAGER - unconnected ?
Generate Blo - @ No hardware targetis open. Open target
~ SIMULATION Hardware ?_00X EXPiv X EXP1_TESTw X 200
Run Simulation g ENLSIEXP/EXP1 sresisources_1inewEXP1v X
Q - s B B N
Vv RTL ANALYSIS v
o content 1 [Jmodule Carry look ahead(~l
~ Open Elaborated Design input [3:0] a,b,
. output [4:0] 3
Report Methodelogy " pur [4:0]
Report DRC 110 Port Properties 2 00X wire [4:0] c;
wire [3:0] g,p,3um;
H{ Schematic o // Gener, na
assign g[0] = a[0] & b[0],g[1] = 2[l] & B[1],g[2] = a[2] = b[2],g[3] = a[3] = b[3];
v SYNTHESIS
Selectan objectto see properties
P Run Synthesis
> Open Synthesized Design g D
TclConsole x Messages | Serial i0 Links | Serial /O Scans ?_00C
~ IMPLEMENTATION
> a =
P Run Implementation Q@I B Ed
~

> OpenImplemented Design

~ PROGRAM AND DEBUG
i Generate Bitstream
~ Open Hardware Manager

Open Target

| Run output will be captured here: E:/VLSI/EXP1/EXPl.runs/impl 1/runme.log

launch runs impl 1 -to_step write bitstream -Jjobs 2
[Mon Sep & 12:40:21 2021] Launched impl 1...

Run output will be captured here: E:/VLSI/EXP1/EXP1.runs/impl 1/runme.log

open_hw

FEile Edit Flow Tools

=

4
Flow Navigator
Geni

~ SIMULATION

Run Simulation

~ RTLANALYSIS

~ Open Elaborated Design

Report Methadalogy

Report DRC

"] Schematic

<

SYNTHESIS
P Run Synthesis

> Open Synthesized Design

<

IMPLEMENTATION

P Run Implementation

> Open Implemented Design

“~ PROGRAM AND DEBUG

i Generate Bitstream

~ Open Hardware Manager

QOpen Target

2017..
Window Layout View Help Q- Quick A 5
b‘ LI - T Dashboard ~

write_bitstream Complete ‘

= Default Layout

HARDWARE MANAGER - localhostiilink_ic/Digilent’2 10248764111

o There are no debug cores. Program device Refresh device

Q =
Name Status
~ E localhost (1) Connected ™

~ @e siliny_tcfDigilent2102487641.. Open

4

< >
Properties ?_00X
-

Select an object to see properties

Q= $ I E®@

| current_hw_device [get_hw_devices xc7z020_1]

Hardware ?_00X EXP1y X EXP1_TESTw X
ﬂ- E:NLSIEXP1/EXP1.s1csisources_1new/EXP1v

* B B/

Q -

“ module Carzy_leck_shead(
: input [3:0] a,b,
output [4:0] 3

o

wire [4:0] ¢

wire [3:0] q,p,sum;

a3aign g[0]

assign pl0]

a3zion cl0l=1l'b

TclConsole % Messages Serial IO Links Serial IO Scans

INFO: [Labtoolstcl 44-466] COpening hw_target localhost:3121/xilinx tci/Digilent/210248764111
set_property PROGREM.FILE {E:/VLSI/EXPL/EXP1.runs/impl 1/Carry lock shead.bit} [get_hw devices xc72020 1]

refresh_hw_device -update hw_probes false [lindex [get_hw devices xc7z020_1] 0]
INFO: [Labtools 27-1435] Device xc7z020 (JIAG device index = 1) is not programmed (DONE status = 0).

a[0] & b[0],g[1]

IS

a[l] « b[1],g[2]

a[2] & b[2],g[3] = a[3] & B[3]:

[01"b[0],p[1]=a[1]"b[1],p[2]=a[2]"b[2],p[3]=a[3]"b[3]7

200

14

I 661 sy VPR E e S

File Edit Flow Tools Window Layout View Help Quick A

write_bitstream Complete .

h‘ - B b‘ B & ¥ Dashboard ~ Default Layout .
Flow Navigator L HARDWARE MANAGER - localhostiilink_tci/Digilent’210248764111 ?
Generate Block Desig) @ There are no debug cores. Program device Refresh device
~ SIMULATION Hardware ?2 00X EXP1v x EXP1_TESTwv X 200
Run Simulation Q = 2 F.3 E:Adl SUEXPAEXPA Alnew/EXPA - %
4 Program Device |
Name — - -
 RTLARALYSIS & arm_df | select a bitstream programming file and download itto your hardware device. You can optionally Al
~ Open Elaborated Design v @ me# select a debug probes file that corresponds to the debug cores contained in the bitstream ‘
programming file.
Report Methodology <
Report DRC
e Bitstream file: EVLSVEXPA/EXPA runsiimpl_1/Carry_look_ahead.bif [[-]
"4 schematic
@ xc72020_1 Debug probes file |I| gl2] = al2] = b[2],9[3] = a[3] = b[3]:
v SYNTHESIS Name: | Enable end of startup check]~b[2],p[3]=a[3]"b[3]7
P Run Synthesis <
General Prope ,V
> Open Synthesized Design
()
racomas o] @ s o
~ IMPLEMENTATION
P Run Implementation Q = - —
INFO: [Labtoolstcl 44-466] Opening hw_target localhost:3121/xilinx tcf/Digilent/210248764111 =
> Open Implemented Design | set_property PROGREM.FILE [E:/VLSI/EXP1/EXP1.runs/impl_1/Carry look ahead.bit} [get_hw devices xc7z020_1]
| current_hw_device [get_hw_devices xc7z020_1]
© EETT IS refresh hw device -update hw probes false [lindex [get hw devices xc7z020 1] 0]
T -) INFO: [Labtools 27-1435] Device xc7z020 (JTAG device index = 1) 1s not programmed (DONE status = 0).
¥ Generate Bitstream ;
~ Open Hardware Manager <

Open Target

Warrwars Navira: w7200 4

22.Verify the function table on Zedboard.

CURRENT
SENSE

o,
Copuright_2012

GEEARENGCE]

ZedBoard

wuuw. zeédboard.org

e cne

™) 3J ne
| ! 8lo| &
Y {
=3
e L
LU Bl = A | =

CONCLUSION: Hence a carry look-ahead adder is designed and implemented on Zed board using Xilinx

Vivado2017.2

PRECAUTIONS:

1. Give connections carefully such as Zed Board ,JTAG Power cable, power supply etc.

2. Switch on the power supply.
3. Handle the Zed Board carefully.

4. Check pin configuration before configuring the Target Device.

VIVA Questions:

List the disadvantages of ripple adder.

Mention the advantages of carry look ahead adder.
Define the Pi,Gi signals in CLA?

Why carry look-ahead adder is faster?

List out carry expressions in CLA.

agrwdE

16

IMPLEMENTATION OF 4X4 ARRAY MULTIPLIER

EXP NO-2

DATE:

AIM: To design and simulate 4 X 4 Array Multiplier using Xilinx's VIVADO and its implementation

on Zed board Evaluation and Development Kit

COMPONENTS & TOOLS REQUIRED:

Target devices: Xilinx Zyng-7000- Zed board Evaluation and Development Kit/Zybo board

Tools: Xilinx VIVADO suite

Preferred language- Verilog

THEORY : The design structure of the array Multiplier is regular, it is based on the add shift algorithm

principle.

Partial product = the multiplicand * multiplier bit

where AND gates are used for the product, the summation is done using Full Adders and Half Adders where the

partial product is shifted according to their bit orders. In an n*n array multiplier, n*n AND gates compute the

partial products and the addition of partial products can be performed by using n* (n — 2) Full adders and n Half
adders. The 4x4 array multiplier shown has 8 inputs and 8 outputs

a5 a2 31

AQ

El

17

1010
X 1011

1010
1010
0000
1010

1101110

Multiplicand
Multiplier

Partial product 1
Partial product 2

Partial product 3
Partial product 4

al a0 Multiplicand
b1 b0 Multiplier

+

P7

+ a3bl a2bl

+ a3b2 alb2

a3b3 aZb3 alb3

a3b0 a2b0 alb0 adbl
albl a0bl

alb2 aOb2

pl

Partial

VERILOG CODE:

module array_mult_4x4(
input [3:0] a,
input [3:0] b,
output [7:0] p

V\’/ire [15:0] pp; wire [9:0] psum;

and g1(pp[0],a[0],b[0]),
92(pp[1],a[1],b[0]),

Products

po J Product

18

93(pp[2],a[2],b[0]),

g4(pp[3].a[3],b[0]),

95(pp[4].a[0],b[1]),

96(pp[5].a[1],b[1]),

g7(ppl6].a[2],b[1]),

98(pp[7].a[3],b[1]),

99(pp[8].a[0],b[2]),

910(pp[9].a[1],b[2]),

911(pp[10],a[2],b[2]),

912(pp[11],a[3],b[2]),

913(pp[12],a[0],b[3]),

g14(pp[13],a[1],b[3]),

915(pp[14],a[2],b[3]),

916(pp[15],a[3],b[3]);

adder_4bit al({1'b 0,pp[3:1]}, pp[7:4], psum[4:0]),
a2(psum[4:1],pp[11:8],psum[9:5]),
a3(psum[9:6],pp[15:12],p[7:3]);

assign p[2:0] = {psum[5],psum[0],pp[O]};
endmodule

4-BIT PARALLEL ADDER
module adder_4bit(

input [3:0] x,y,

output [4:0] s

wire [4:1] c; wire [3:0] sum; supplyO gnd;
full_adder fal(x[0],y[0],gnd, sum[0],c[1]),
fa2(x[1],y[1].c[1].sum[1].c[2]),
fa3(x[2].y[2].c[2].sum[2] c[3]),
fad(x[3],y[3].c[3],sum[3].c[4]);
assign s = {c[4],sum};
endmodule
full-adder
module full_adder(
input a,b,cin,
output s,co
);
assign s=a”b”"cin,co=(a&b)|(b&cin)|(cin&a);
endmodule
TEST BENCH FOR 4X4 ARRAY MULTIPLIER:
module tst_array();
reg [3:0] a,b;
wire [7:0] p;
array_mult_4x4 11(a,b,p);
initial
begin
a=4ho;
b= 4'h 0;
end
always

19

begin

#3 a=a+4'h 1;
#3b=b+4h1;
end

endmodule

PROCEDURE:

1. Double click on the Vivado2017.2 icon on your desktop to open up the welcome window of the
development tool (as shown below). Three main sections can be observed in this window: “Quick Start”,
“Tasks”, and “Learning Center”.

2. . Now, click on “Create Project” to create a new project. You have to be careful about where to save

your project file .

Click on NEXT and type project name, project location click on NEXT

In the next window, choose “RTL Project” as the project type. (click on select button), click on NEXT

Click on Boards:

I. vendor:em.avnet.com

ii. Display Name: Zed board Evaluation and Development Kit.

iii. Board Rev : Latest, click on NEXT,FINISH

ok w

6. Click on plus symbol(Add source)

7. Click on Add or create design source and NEXT .In the opened window, you can create source
file (Verilog/Verilog Header/SystemVeilog) for your new project or add sources from the
existing projects. Click on “Create File”, and in the opened window .

8.Click on Create file and type the file name

The opened window is the main environment for your project that is called “Project

Manager”. You can explore it by seeing the options of each category in the toolbar on top of

the window. In the left side, you can see the “Settings”, “Add Sources”, “’Language

Template”, “IP Catalog”, “IP Integrator”, “Simulation”, “RTL Analysis”, “Synthesis”,

“Implementation”, and “Program and Debug”. Each of these serves a part of the digital

design flow. In the middle, you can see the windows for “Sources”, “Properties”, “Project

Summary”, and the reports and summaries for the execution of the project file

9. Type the program

10. Click on plus button(Add sources) and select Add or create simulation sources and
NEXT

11. Click on the Create file and type the file name

12. Type the test bench program and save

13. Run simulation -> click on Run behavioral simulation

14. SIMULATION OUTPUT

20

Value

40 ns 100 ns 110

0 ns 0 ns 30 ns 50 ns €0 ns 70 ns 20 ns 90 ns 00 ns

Y e I Y e Y e e o MY Y ey T e L A A T A B R
” o v Xl s Db e g e X7 s [N s Xoa X b fle X oo [X e X £ X oo X1 X z [X3
1

____i—__.- --l
= e =
S s ==
— | -IF —

=
L
I

e

=
==
—=
—=
o=
—
I
m—
.

M 1]

15. Click on RTL Analysis -> open elaborate designs(click on 1/O ports)
16. Assign port packages(assign pin number) and 1/0 std (select LVCMOS33)

INPUT PIN OUTPUT LED PIN
NUMBERS NUMBERS

SWO0 F22 LDO T22
SW1 G22 LD1 T21
SW2 H22 LD2 u22
SW3 F21 LD3 U2l
SW4 H19 LD4 V22
SW5 H18 LDS W22
SW6 H17 LD6 U19
SW7 M15 LD7 ul4

17. Save and type the XDC File name

18. Run the Implementation and select generate bit stream click OK

19.Select the Open Hardware Manager and click on OK

20. Connect the Hardware kit (Ex: ZedBoard) and Click on Open Target -> auto connect
21.Click on the Program Device ,verify the .bit file and click OK

22. Verify the function table on Zedboard

LT (LT

-

CONCLUSION: Hence a 4x4 array multiplier is designed and implemented on Zed board using Xilinx
Vivado2017.2

PRECAUTIONS:

1. Give connections carefully such as Zed Board ,JTAG Power cable, power supply etc.
2. Switch on the power supply.

3. Handle the Zed Board carefully.

4. Check pin configuration before configuring the Target Device.

VIVA -QUESTIONS:

1. What is array multiplier?

2. What is parallel adder?

3. How many adders are required to implement 4x4 array multiplier?
4. What are the disadvantages of array multipliers?

5. Classify multipliers.

22

Implementation of a 4-Bit Arithmetic & Logic
Unit

EXP NO -3

DATE:

AIM: To design and simulate of a 4-Bit Arithmetic & Logic using Xilinx's VIVADO and its implementation
on Zed board Evaluation and Development Kit

COMPONENTS & TOOLS REQUIRED:

Target devices: Xilinx Zyng-7000- Zed board Evaluation and Development Kit/Zybo board

Tools: Xilinx VIVADO suite

Preferred language- Verilog

THEORY: ALU or Arithmetic Logical Unit is a digital circuit that performs arithmetic operations like
addition, subtraction, division, multiplication and logical oparations like and, or, xor, nand, nor etc.

S S0 s1 SO
A0
BO FoO Ay
co By
Fi By 41
B1 MUX Fo
crE
=)
Az F2
B2 Ao
="
Co
A3 .

F3
B3

Cours

VERILOG CODE :

module alu(input [3:0] A,B,
input [3:0] ALU_Sel,

output [4:0] ALU_Out,

output CarryOut);

reg [4:0] ALU_Result;

wire [5:0] tmp;

assigh ALU_Out=ALU_Result;
assign tmp= {1'b0,A} + {1'b0,B};
assign CarryOut=tmp[5];
always @(*)

begin

case(ALU_Sel)

4'h0000: ALU_Result=A+B ;
4'b0001: ALU_Result=A-B ;

/I Addition
/! Subtraction

S0 51 g gy FUNCTIONSELECTION

Al
INPUT & Al
A2
A3

B0
B1
INPUT B B
B3

CARRYIN

4-BIT ARITHMETIC
LOGIC UNIT

FO
F1 QUTPUT FUNCTION
F2
F3

CARRY OUT

/I ALU 8-bit Inputs
/I ALU Selection
/I ALU 8-bit Output
/I Carry Out Flag

/I ALU out

/I Carryout flag

MODE CONTROL

23

4'n0010: ALU_Result=A*B; /I Multiplication

4'b0011: ALU_ Result=A/B; /I Division
4'h0100: ALU_Result=A<<1, // Logical shift left
4'n0101: ALU_Result=A>>1; /I Logical shift right

4'h0110: ALU_Result= {A[2:0],A[3]}; // Rotate left

4'h0111: ALU_Result= {A[0],A[3:1]}; // Rotate right

4'p1000: ALU_Result=A&B; /I Logical and
4'p1001: ALU_Result=A|B; /I Logical or
4'p1010: ALU_Result=A"B; /I Logical xor
4'h1011: ALU_Result=~(A|B); /I Logical nor
4'p1100: ALU_Result=~(A&B); /l Logical nand
4'h1101: ALU_Result=~(A"B); /I Logical xnor

4'p1110: ALU_Result= (A>B)?4'd1:4'd0 ; // Greater comparison
4'h1111: ALU_Result= (A==B)?4'd1:4'd0 ; // Equal comparison

default: ALU_Result=A+B ;
endcase

end

endmodule

TEST BENCH FOR 4-BIT ALU:
module tst_alu();

reg [3:0] a,b;

reg [3:0] alu_sel,

wire [4:0] alu_out;

alu call(a,b,alu_sel,alu_out);
initial

begin

a= 4'h 6; b=4'n 5; alu_sel =4'h 0;
#320 a= 4'h A; b =4'h9;

end

always

#20 alu_sel = alu_sel + 4'h1;
endmodule

24

PROCEDURE:

1. Double click on the Vivado2017.2 icon on your desktop to open up the welcome window of the
development tool (as shown below). Three main sections can be observed in this window: “Quick Start”,
“Tasks”, and “Learning Center”.

2. . Now, click on “Create Project” to create a new project. You have to be careful about where to save

your project file .

Click on NEXT and type project name, project location click on NEXT

In the next window, choose “RTL Project” as the project type. (click on select button), click on NEXT

5. Click on Boards:

I. vendor:em.avnet.com
ii. Display Name: Zed board Evaluation and Development Kit.

iii. Board Rev : Latest, click on NEXT,FINISH

B w

6. Click on plus symbol(Add source)

7. Click on Add or create design source and NEXT .In the opened window, you can create source
file (Verilog/Verilog Header/SystemVeilog) for your new project or add sources from the
existing projects. Click on “Create File”, and in the opened window .

8.Click on Create file and type the file name

The opened window is the main environment for your project that is called “Project

Manager”. You can explore it by seeing the options of each category in the toolbar on top of

the window. In the left side, you can see the “Settings”, “Add Sources”, “’Language

Template”, “IP Catalog”, “IP Integrator”, “Simulation”, “RTL Analysis”, “Synthesis”,

“Implementation”, and “Program and Debug”. Each of these serves a part of the digital
design flow. In the middle, you can see the windows for “Sources”, “Properties”, “Project
Summary”’, and the reports and summaries for the execution of the project file

9. Type the program

10. Click on plus button(Add sources) and select Add or create simulation sources and
NEXT

11. Click on the Create file and type the file name

12. Type the test bench program and save

13. Run simulation -> click on Run behavioral simulation

14.SIMULATION OUTPUT

Untitied 8 - X

o] il

=
]

H
i
]
H
]

Ml
Bt

25

15. Click on RTL Analysis -> open elaborate designs(click on /O ports)
16. Assign port packages(assign pin number) and 1/O std (select LVCMOS33)

INPUT PIN OUTPUT LED PIN
NUMBERS NUMBERS

SWO0 F22 LDO T22
SW1 G22 LD1 T21
SW2 H22 LD2 u22
SW3 F21 LD3 U2l
SW4 H19 LD4 V22
SW5 H18 LD5 W22
SW6 H17 LD6 U19
SW7 M15 LD7 Ul4
SO T18

S1 N15

S2 P16

S3 R18

17. Save and type the XDC File name

18. Run the Implementation and select generate bit stream click OK

19.Select the Open Hardware Manager and click on OK

20. Connect the Hardware kit (Ex: ZedBoard) and Click on Open Target -> auto connect
21.Click on the Program Device ,verify the .bit file and click OK

22. Verify the function table on Zedboard

- .
CONCLUSION: Hence a 4-bit ALU is designed and iplemented on Zed board using Xilinx Vivado2017.2

PRECAUTIONS:

1. Give connections carefully such as Zed Board ,JTAG Power cable, power supply etc.
2. Switch on the power supply.

3. Handle the Zed Board carefully.

4. Check pin configuration before configuring the Target Device.
VIVA —-QUESTIONS:

What does ALU means?

What operations does ALU perform?

Mention the role of control unit and ALU in computer system?
What is the difference between ALU and control unit?

What is the use of multiplexer in ALU design?

okrwnPE

26

Implementation of Zero /one Detector EXP NO-4

DATE:

AIM: To design and simulate Zero /one Detector using Xilinx's VIVADO and its implemention on Zed
Board Evaluation and Development Kit

COMPONENTS & TOOLS REQUIRED:
Target devices: Xilinx Zyng-7000- Zed board Evaluation and Development Kit/Zybo board
Tools: Xilinx VIVADO suite

Preferred language- Verilog

THEORY: Detecting all ones or all zeros on wide N-bit words requires large fan-in AND or NOR gates.

1's detector: N-input AND gate

al[; 0
0's detector: NOTs + 1's detector (N-input NOR) ° & D N
¢ [o 92 o] :(1] B o ol
3 4O g i? 0 I—_Z;L AND
2

allones

>> >

[=]

4
10 =% .
allzeros 0 o 9B
1 0
L OR s o2
. L AND
I A
Q
1
iTL OR

FF FFE T T

VERILOG CODE:

module zeroone (01,02,a,b,c,d);
input a,b,c,d;

output 01,02;

wire w,X,Y,z;

and gl(w,a,b),g2(x,c,d),g3(01,w,X);
nor g4(y,a,b),g5(z,c,d);

and g6(02,y,2);

endmodule

TEST BENCH

module tb();

reg a,b,c,d;

wire 01,02;

zeroone th(o1,02,a,b,c,d);
initial

begin

a=0;b=0;c=0;d=0;

#2 a=1;b=1;c=0;d=1;

#2 a=1;b=1;c=1;d=1;

27

end

initial #10 $stop;

initial $monitor($time,"01=%b,02=%b,a=%b,b=%b,c=%b,d=%b",01,02,a,b,c,d);
endmodule

PROCEDURE:

1. Double click on the Vivado2017.2 icon on your desktop to open up the welcome window of the
development tool (as shown below). Three main sections can be observed in this window: “Quick Start”,
“Tasks”, and “Learning Center”.

2. . Now, click on “Create Project” to create a new project. You have to be careful about where to save your

project file .

Click on NEXT and type project name, project location click on NEXT

In the next window, choose “RTL Project” as the project type. (click on select button), click on NEXT

Click on Boards:

I. vendor:em.avnet.com
ii. Display Name: Zed board Evaluation and Development Kit.

iii. Board Rev : Latest, click on NEXT,FINISH

ok w

6. Click on plus symbol(Add source)

7. Click on Add or create design source and NEXT .In the opened window, you can create source
file (Verilog/Verilog Header/SystemVeilog) for your new project or add sources from the
existing projects. Click on “Create File”, and in the opened window .
8.Click on Create file and type the file name
The opened window is the main environment for your project that is called “Project
Manager”. You can explore it by seeing the options of each category in the toolbar on top of
the window. In the left side, you can see the “Settings”, “Add Sources”, “’Language
Template”, “IP Catalog”, “IP Integrator”, “Simulation”, “RTL Analysis”, “Synthesis”,
“Implementation”, and “Program and Debug”. Each of these serves a part of the digital
design flow. In the middle, you can see the windows for “Sources”, ‘“Properties”, “Project

Summary”, and the reports and summaries for the execution of the project file

9. Type the program

10. Click on plus button(Add sources) and select Add or create simulation sources and
NEXT

11. Click on the Create file and type the file name

12. Type the test bench program and save

13. Run simulation -> click on Run behavioral simulation

28

14. SIMULATION OUTPUT

Language Templates @

1F IP Catalog

¥ IP INTEGRATOR

Create Block Design =

~ SIMULATION

Run Simulation

v RTLANALYSIS

> Open Elaborated Design

~ SYNTHESIS
P Run Synthesis

> Open Synthesized Design

~ IMPLEMENTATION

P Run Implementation Tel Console Messages Log

Sim Time: 10 ns

15. Click on RTL Analysis -> open elaborate designs(click on 1/0O ports)
16. Assign port packages(assign pin number) and 1/O std (select LVCMOS33)

INPUT PIN OUTPUT LED PIN
NUMBERS NUMBERS

SWO0 F22 LDO T22
SW1 G22 LD1 T21
SW2 H22 LD2 u22
SW3 F21 LD3 U2l
SW4 H19 LD4 V22
SW5 H18 LDS W22
SW6 H17 LD6 U19
SW7 M15 LD7 ul4

17. Save and type the XDC File name
18. Run the Implementation and select generate bit stream click OK

19.Select the Open Hardware Manager and click on OK

20. Connect the Hardware kit (Ex: ZedBoard) and Click on Open Target -> auto connect
21.Click on the Program Device ,verify the .bit file and click OK

22. Verify the function table on Zedboard

29

CONCLUSION: Hence a zero /one detector is designed and implemented on Zed board using Xilinx

Vivado2017.2

PRECAUTIONS:
1. Give connections carefully such as Zed Board , JTAG Power cable, power supply etc.
2. Switch on the power supply.
3. Handle the Zed Board carefully.
4. Check pin configuration before configuring the Target Device.
VIVA —-QUESTIONS:
1. What does zero/one means?
2. What are the applications of zero/one detector?
3. Develop a sequence detector?

30

Implementation of Flip Flops: SR, JK,T,D

EXP NO-5

DATE:

AIM: To design and simulate SR, D, JK, T Flip- Flops using Xilinx's VIVADO and its implementation on
Zed Board Evaluation and Development Kit

COMPONENTS & TOOLS REQUIRED:

Target devices: Xilinx Zyng-7000- Zed board Evaluation and Development Kit/Zybo board

Tools: Xilinx VIVADO suite

Preferred language- Verilog

THEORY : A flip flop is an electronic circuit with two stable states that can be used to store binary data. It is
the basic storage element in sequential logic. There are majorly 4 types of flip-flops, with the most common one
being SR flip-flop. This simple flip-flop circuit has a set input (S) and a reset input (R). In this system, when
Set “S” as active, the output “Q” would be high and “Q*¢” will be low when reset the input. Due to the undefined
state in the SR flip-flop, another flip-flop is required in electronics. The JK flip-flop is an improvement on the
SR flip-flop where the undefined state which occurs when S=R=1 is eliminated.. The JK Flip Flop when
J=K=1,the output is complement of previous state.In D flip-flop the output (Q) is same as the input. A T flip-
flop is like a JK flip-flop. This is basically a single input version of JK flip-flops. This modified form of JK
flip-flop is obtained by connecting both inputs J and K together. It has only one input along with the clock
input.Because of its ability to complement its state (i.e.) Toggle, hence the name Toggle flip-flop.

LOGIC SYMBOLS OF FLIP-FLOPS

— i N
. —_— =" -y ¢ e : prrm—
Vs SR Flip Flop outputs Y D Flip Flop outputs ‘s JK Flip Flop outputs ke TFlipFlop oupUs
——a ———> — —
15t ——> A] A st ——— A 5t b A
ck ck ck [1.(—]
TRUTH TABLE:
S-R Flip Flop D-Flip Flop J-K Flip Flop T- Flip Flop
Inputs Outputs Inputs Outputs Inputs . Outputs : Inputs Outputs
rst(clk|s|r|q|gb| Action rst|clk|j| k[g |gb| Action
1 X| x| a| ab|No change rst|clk|d|q|gb| Action 1 [+ [X|X]| a|qb|No Change rstfclk|t| q[gb| Action
0 010|q|gb|No Change 1 by q qb No Change 0 0/0] q |qgb|No Change 1 X q qb No Change
0 of1]o0 Reset 0 0/1[{ 0| 1| Reset
0 Telilal: 0 0(0 Reset 5 T o 0 0| q|gb|No Change
0 111]-| - Illegal 0 1 1 0 Set 0 1/1{q|q Toggle 0 1 ql ql Togqle

31

VERILOG CODE:
SR FLIPFLOP:
module srf(

input s,r,

input clk,

output reg g,nq

initial
begin
g=1'h0;
ng=1'b1;
end
always @(posedge clk)
begin
case({s,r})
{1'p0,1'b0}: begin g=q; ng=ng; end
{1'b0,1'b1}: begin g=1'b0; ng=1'b1; end
{1'b1,1'b0}: begin g=1'b1; ng=1'b0; end
{1'b1,1'b1}: begin g=1'bx; g=1'bx; end
endcase
end
endmodule

TEST BENCH PROGRAM

module sr_ff test;
reg s,r,clk;
wire g,nqQ;
sr_ffsr_ff_test(s,r,clk,q,nq);
initial
begin
forever
begin
clk=1;
#50 clk=0;
#50 clk=1;
end
end
initial
begin
s=0;r=1;
#100 s=0;r=0; #100 s=1;r=0; #100 s=1;r=1,
end
initial
begin

$monitor($time,"s=%b,r=%b,clk=%b,q=%b,ng=%b",s,r,clk,q,nq);

end
endmodule

32

JK FLIPFLOP WITH CLOCK DIVISION:

module jk_ff(q,nq,},k,clk);
output reg g,nq;

input j,k,clk;

reg clkd; reg [30:0] div;
always @ (posedge clk)

begin

div <= div+1'b1;
clkd <= div[26];
end

initial begin g=1'b0; ng=1'b1; end
always @ (posedge clkd)
begin
case({J,k})
{1'p0,1'b0}:begin g=q; nq = nq; end
{1'b0,1'b1}: begin g=1'b0; nq =1'bl; end
{1'b1,1'b0}:begin g=1'b1; nq =1'b0; end
{1'b1,1'b1}: begin g=~q; nq =~ ng; end
endcase
end
endmodule

TEST BENCH PROGRAM:
module tb_jk ();
reg j,k,clk;

wire g,nqQ;
initial begin

clk=0;
end;

always #5 clk = ~clk;
jk_ff swt (q,nq,j,k,clk);
initial
begin
]<=0;
k<=0;
#5)<=0;
k<=1,
#15j<=1;
k<=0;
#25)<=0;
k<=0;
#35j<=1;
k<=1,
end;
endmodule
T- FLIPFLOP:
module tff (g, clk,reset, t);

33

input clk,reset,t;
output reg q;
always @ (posedge clk) begin
if (reset)

q<=0;
else
if (t)
gq<=-q;
else
g<=¢;
end
endmodule

TEST BENCH PROGRAM:
module tb_tff();

reg t;

reg clk;

reg reset;

wire q;

tff dut(q, clk,reset, t);

initial begin
clk=0;
forever #10 clk = ~clk;
end
initial begin
reset=1;
#100;
reset=0;
t<=1,
#100;
t<=0;
#100;
t<=1,
end
endmodule

T- FLIPFLOP:

module tff (g, clk,reset, t);
input clk,reset,t;

output reg q;

always @ (posedge clk) begin
if (reset)

q<=0;

else

if (t)

q<=-~0;

else

34

gq<=q;

end

endmodule

TEST BENCH PROGRAM:

module tb_tff();

reg t;

reg clk;

reg reset;

wire q;

tff dut(q, clk,reset, t);

initial begin

clk=0;

forever #10 clk = ~clk;

end

initial begin

reset=1;

#100;

reset=0;

t<=1;

#100;

t<=0;

#100;

t<=1;

end

endmodule

D- FLIPFLOP:

module D_ff(
input d,clk,async_reset,
output reg g

always @(posedge clk or posedge async_reset)
begin
if(async_reset==1'b1)
g <=1'b0;
else
q<=d
end
endmodule

TEST BENCH PROGRAM:
module tb_DFF();
reg D; reg clk; reg reset;
wire Q;
D_ff dut(D,clk,reset,Q);
initial begin

clk=0;

forever #10 clk = ~clk;

35

end

initial begin

reset=1;

D<=0;

#100; reset=0; D <=1;
#100; D<=0;

#100; D<=1;

end

endmodule

36

PROCEDURE:

1.

ok~ w

Double click on the Vivado2017.2 icon on your desktop to open up the welcome window of the
development tool (as shown below). Three main sections can be observed in this window: “Quick Start”,
“Tasks”, and “Learning Center”.

. Now, click on “Create Project” to create a new project. You have to be careful about where to save
your project file .

Click on NEXT and type project name, project location click on NEXT

In the next window, choose “RTL Project” as the project type. (click on select button), click on NEXT
Click on Boards:

I. vendor:em.avnet.com

ii. Display Name: Zed board Evaluation and Development Kit.
iii. Board Rev : Latest, click on NEXT,FINISH

6. Click on plus symbol(Add source)

7. Click on Add or create design source and NEXT .In the opened window, you can create source

file (Verilog/Verilog Header/SystemVeilog) for your new project or add sources from the
existing projects. Click on “Create File”, and in the opened window .

8.Click on Create file and type the file name
The opened window is the main environment for your project that is called “Project
Manager”. You can explore it by seeing the options of each category in the toolbar on top of
the window. In the left side, you can see the “Settings”, “Add Sources”, “’Language
Template”, “IP Catalog”, “IP Integrator”, “Simulation”, “RTL Analysis”, “Synthesis”,
“Implementation”, and “Program and Debug”. Each of these serves a part of the digital

design flow. In the middle, you can see the windows for “Sources”, “Properties”, “Project
Summary”, and the reports and summaries for the execution of the project file

9. Type the program
10. Click on plus button(Add sources) and select Add or create simulation sources and

NEXT

11. Click on the Create file and type the file name

12. Type the test bench program and save

13. Run simulation -> click on Run behavioral simulation
14.SIMULATION OUTPUT

SR-FLIP FLOP:

1,240,938 ns

1,100 ns 1,400 ns l,EULI ns

37

D-FLIP FLOP:

Hame Valie

ik
1 asine_Jesel

-EEI

15. Click on RTL Analysis -> open elaborate designs(click on 1/O ports)
16. Assign port packages(assign pin number) and 1/0 std (select LVCMOS33)

INPUT PIN OUTPUT LED PIN
NUMBERS NUMBERS

SWO0 F22 LDO T22
SW1 G22 LD1 121
SW2 H22 LD2 u22
SW3 F21 LD3 U2l
SW4 H19 LD4 V22
SW5 H18 LDS W22
SW6 H17 LD6 U19
SW7 M15 LD7 uil4

38

17. Save and type the XDC File name

18. Run the Implementation and select generate bit stream click OK

19.Select the Open Hardware Manager and click on OK

20. Connect the Hardware kit (Ex: ZedBoard) and Click on Open Target -> auto connect
21.Click on the Program Device ,verify the .bit file and click OK

22. Verify the function table on Zedboard

CONCLUSION: Hence all the flip-flops are designed and implemented on Zed board using Xilinx

Vivado2017.2

PRECAUTIONS:

1. Give connections carefully such as Zed Board , JTAG Power cable, power supply etc.
2. Switch on the power supply.

3. Handle the Zed Board carefully.

4. Check pin configuration before configuring the Target Device.

VIVA-QUESTIONS:

In a J-K flip-flop, if J=K the resulting flip-flop is?

The characteristic equation of J-K flip-flop is?

What does the direct line on the clock input of a J-K flip-flop mean?
List the differences between latch and flipflop

Define Sequential and Combinational circuts.

Define level triggering and edge triggering.

oakrwdE

39

Ful custom IC design flow in Cadence:
Design Entry

Go to cds_work folder-> create folder->RightClick->open in Terminal->virtuoso
Opens cds.log
Go to tools ->Library manager
File->New->Library->library_name->Attach to an existing library->gpdk90
Select libraryname->File->New->cellview->cellename->opens virtuoso schematic editor
Enter the design:
I->Instance
P->Pin
W->Wire
F->Fit
Q->Properties
R->Rotate
To bring pmos and nmos instances

Press I->Browse for gpdk90 library->select either pmoslv or nmoslv->enter->edit
->width value->OK->place component in proper position

To move objects

Select schematic object->Click and drag to move objects

For properties of objects

Select schematic object->press key Q keyboard for properties of objects
To zoom in and zoom out

Ctrl+Mouse scroll up and scroll down[keys [->zoomout and]->zoomin]
To bring pins

Press key P->Give pin name->select direction->input [or output]->OK->place pin in
proper position

To provide wiring

Press key W->click at the point from which wiring to be started ,to be turned and click
at the point at which wiring to be ended

[use key ESC ->to come out of wiring]

[use undo and redo options]

[select wiring and press key delete to delete wiring]

Check and save

Create Symbol

Go to create->cell view ->From cell view->Proper alignment for pins
Close symbol and schematic
Pre-Layout simulation:

Select libraryname in library manager->File->New->cellview->cellename for testbench
->0pens Vvirtuoso schematic editor

Enter the testbench setup:
I->Instance
P->Pin
W->Wire
F->Fit
Q->Properties
To bring DC power supply and vpulse

Press I->Browse for analogL.ib library->select DC powersupply ->give dc voltage
value[1.8] ->place dc power supply in proper position

[Press I->Browse for analogL.ib library->select vpulse->
Voltagel value[0]

Voltage? value[1.8]

Period->[40n]

Delay->[1p]

Rise time->[1p]

Fall time->[1p][delay,rise and fall time as minimum as possible]
Pulse width[20n][for 50% duty cycle]

With above values place vpulse in proper position]

Check and save

Go to Launch->ADE L->Opens ADE L window
[Go to Variables->Edit->Variable name and value->Add->0k]
Go to Analyses->Choose->tran
Stop time
Accuracy
[Analyses->dc->select dc operating point
Design variable->select design variable
Sweep range-> start and stop values]

Go to outputs->to be ploted->select on schematic->select input and output wires in
schematic

Run simulation in ADE L->observe waveforms

[measure required parameters]

Layout design

Open schematic of design

Go to launch->Layout XL->0k->0k-> opens virtuoso layout editor
In virtuoso layout editor

Go to Connectivity->generate->All from the source->opens dialog box->Give
separation(0.12)->Tick in boundary->ok->layout objects appear in PR boundary

To move objects

Select layout object->Click and drag to move objects

For properties of objects

Select layout objects->press key Q keyboard for properties of objects

To Extend edge of PR boundary(stretch)

Press S key in keyboard->Select any edge of PR boundary->Move curser and click
To zoom in and zoom out

Mouse scroll up and scroll down[ctrl+Z and shift +Z]

To get ruler->Short cut key->K

To remove ruler->short cut->shift+K

To select all->ctrl+A

To deselect ->ctrl+D
To get substrate taps for transistor

Select on transistor->RC->parameter->Bodytietype->change as integrated
(for inverter)[select either left or right tap]

[Detached (for NAND and NOR)[select top tap for pmos and bottom tap for
nmosj]

[We can also draw taps as customized]
To draw routing
Select layer in layer pallette

Press P [or ctri+shift+W][path] and click at start point,release the mouse,move
in required direction and press Enter at end point
[use key ESC ->to come out of routing]

[use undo and redo options]

[select layer[path or route] and press key delete to delete wiring]

To align layers

Select layer->press key A->select one edge of the layer to be moved and click at
the point[edge] to which the layer to be moved

[Complete the layout with above information]
Verification of layout

Go to assura tab in layout editor->Technology->Browse and select path as
[home/buet/cadence/gpdk90 v4.6/assura_tech.lib]->ok

DRC

Go to assura->runDRC->Give runname ->select Technology
LVS

Go to assura->runLVS->Give runname ->select Technology
PEX or RCX

Go to assura->runRCX->opens dialog box

Setup tab->outpt->select as extractedview

Extraction tab->Extraction Type->RC
Refnode->VSS![or GND!]
Filtering tab->Enter power nets->VDD! [Enter] VSS![or GND!]
Enter ground nets->GND!->0OK
Post-Layout simulation
Select testbench cell in library manager

Go to File->New->cellview->change type as config->OK->opens new configuration-
>change view as schematic->use template->change name as spectre->0k and ok

Go to tree view->unplus 10->Right click->set instance view-> av_exctracted
view

Click open-opens testbench cell view

Go to session in testbench schematic cell view->load state->run simulation->observe
post-layout simulation waveforms

[measure required parameters]

[Refer instructions given by demonstrator]
GDSII generation

Select CDS.log window

Go to File->Export->stream->opens dialog box

Give stream file name-> stremfilename.gds[select proper location]

Add Technology library

Browse for Library->cell->view->0k

Click Translate

[Stream file will be located in respective location]

[find stream file]

[open in terminal]

[vim stremfilename.gds]-> this linux command opens stream file

1. Design of NMOS Inverter

AIM: To design, simulate and verify the operation of NMOS inverter using Cadence tools at
different VDDs, Widths of NMOS transistor by ensuring minimum Lengths and widths for

its Power and Delay analysis.

Tools used:

1. Virtuoso Tool for Schematic Designs
2. Spectre Tool for Simulation

Circuit:

- W=0A50 .
=013

Procedure: Refer Annexure |

Testbench:

Simulation Results:

Name [wis | .“
22
m/yY i 3
il
1.6
12
s
= 08
>
04
0.0
04
19
m/A @
1.5
1l
[
“07
03
-0.1
ML L I L L L I L L I L B I I I L L I I I I L L I L I I B L I I
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40,0 450 50.0
tim (ne)
DC Response Tue Jul 26 15:49:02 1
ame |ws | < ——— — 1~
/A 3 1
i
15
1.3
1.1
209
0.7
05
0.3
0.1
-0.1
[T T T T | fAAtbEAN) T T T T T T T T T T T 1
0.0 0.1 ¢ 0.3 0. 0 0 0. 0.8 09 1.0 11 1 13 14 1 1 1 18
de (V)

The design, simulation and verification of CMOS inverter using Cadence tools at different

VDD, Widths of NMOS and PMOS transistors for its Power and Delay analysis was performed.

1) VDD: , Width of NMOS : : Width of
Power: :Delay:

2) VDD: , Width of NMOS : : Width of
Power: :Delay:

3) VDD: , Width of NMOS X : Width of

Power: :Delay:

2. Design of CMOS Inverter

AIM: To design, simulate and verify the operation of CMOS inverter using Cadence tools at
different VDDs, Widths of NMOS and PMOS transistors by ensuring minimum Lengths

and widths for its Power and Delay analysis.

Tools used:

3. Virtuoso Tool for Schematic Designs
4. Spectre Tool for Simulation

Circuit:

»
prosly ‘
G Tagt”

45n

nmos

Procedure: Refer Annexure |

Testbench:

Simulation Results:

Name [wis | .“
22
m/yY i 3
il
1.6
12
s
= 08
>
04
0.0
04
19
m/A
1.5
1l
[
“07
03
0130
(LU B L L AN N 0 L L TR L LA LN WL L L W N A L L A0 L O IR L Y RO L 0 0 L L R |
0.0 5.0 100 15.0 20.0 25.0 30,0 35.0 40,0 45.0 50.0
tim (ne)
DC Response Tue Jul 26 15:49:02 1
ame [wis | 1 — — : :
/A 3 19
i
15
1.3
11
<09
0.7
0.5
03
0.1
-0.1
I [FRAARE) T | fAAtbEAN) T T T T I T N T T T T 1
0.0 0 ¢ 0.3 0. 0.5 0 0. 0.8 09 1.0 11 1 13 14 1 1 1 18
de (V)

VDD, Widths of NMOS and PMOS transistors for its Power and Delay analysis was performed.

The design, simulation and verification of CMOS inverter using Cadence tools at different

1)

2)

3)

VDD:

PMOS:

VDD:

PMOS:

VDD:

PMOS:

Width

:Power:

Width

:Power:

Width

:Power:

of NMOS Width
:Delay:

of NMOS Width
:Delay:

of NMOS Width

:Delay:

of

of

of

3. Design of 2-input CMOS NOR gate

AIM: To design, simulate and verify the operation of CMOS NOR using Cadence tools at different
VDDs, Widths of NMOS and PMOS transistors by ensuring minimum Lengths and widths
for its Power and Delay analysis.

Tools used:

1. Virtuoso Tool for Schematic Designs
2. Spectre Tool for Simulation

Circuit:
. -—
P'\'\EE'V
.r_—"xl-'—\.;l.
- Srie et T
. -»
S prrros 1w
T+ S 1awt
i 1 ZE0m
nimes 1+ nmcs s
"'d'_l T | 5
| e I v 12a = 1.2 2
Testbench:

SimulationResults:

R&Pandl vl\IU"‘Z“

Main: 3.998ns | Center

Ext: 8ns | Center

el Ny /=154 Ps) oy ™ vy P g PSP ey P g g PP o g IS
1 X2 %8 ’
B
2 | X2 M| j
I
: I
I
™~ f
3 | X | :
I
AnorB |
I
|
Result:

The design, simulation and verification of CMOS NOR Gate using Cadence tools at
different VDD, Widths of NMOS and PMOS transistors for its Power and Delay analysis was

performed.
1) VDD:
PMOS:
2) VDD:
PMOS:
3) VDD:
PMOS:

Width

:Power:

Width

:Power:

Width

:Power:

of NMOS Width
:Delay:

of NMOS Width
:Delay:

of NMOS Width

:Delay:

of

of

of

4.Design of 2-input NAND Gate Design

AIM: To design, simulate and verify the operation of CMOS NAND using Cadence tools at
different VDDs, Widths of NMOS and PMOS transistors by ensuring minimum Lengths
and widths for its Power and Delay analysis.

Tools used:

1. Virtuoso Tool for Schematic Designs
2. Spectre Tool for Simulation

Circuit:
B .{é'. 'qé o
A I B [T
> AR
_________________ e .
S ﬁﬁﬁfHEa'If'” -
Testbench:

D %@:

Simulation Results:

Transient Resp Fri Jul 29 15:06:26
lame) e
-,y 26 ‘ E
] | | |
| I I 1 T | SRR PR "___+'_'ﬁ IRSIRI
Z1z2 | |
g .
0.4 |
0.4
-me 19
=
=07
0.1
-A L9 I
s {
=07 {
0.1 "
f T T T T T T T T T T T T T T T T 1
0.0 10.0 20,0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100
time (ns)
DC Response Fri Jul 29 15:08:37 1
Name ot
-A 19
= S
L7
15
13 ;
s §
209 A
0.7
0.5 —
0.3 ;
0.1
-0.1
[T T I T I T I T T I T I T T I T T 1
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 1.3 14 15 16 174 1.8
de (V)
Transient and DC analysis
Result:

1

The design, simulation and verification of CMOS NAND Gate using Cadence tools at
different VDD, Widths of NMOS and PMOS transistors for its Power and Delay analysis was

performed.
1) VDD:
PMOS:
2) VDD:
PMOS:
3) VDD:
PMOS:

Width of NMOS : : Width
:Power: :Delay:
Width of NMOS : : Width
:Power: :Delay:
Width of NMOS : : Width

:Power: :Delay:

of

of

of

5.Design D- Flip Flop

AIM: To design, simulate and verify the operation of CMOS D-Flip flop using Cadence tools at
different VDDs, Widths of NMOS and PMOS transistors by ensuring minimum Lengths
and widths for its Power and Delay analysis.

Tools used:
1. Virtuoso Tool for Schematic Designs

2. Spectre Tool for Simulation

Circuit:

Testbench:

Simulation Results:

34 T T] 7 7 7 7]] | i vis)

Voltage

)

7 . . — - ; - v

T v T T : T :
0.0N 20.0M 400N 500N 200N _100.0N 120.0N 140,08 160.0M 180.0N 200.0
ime (s

Transient analysis

Result:
The design, simulation and verification of CMOS D-Flip flop using Cadence tools at
different VDD, Widths of NMOS and PMOS transistors for its Power and Delay analysis was

performed.

1) VDD: , Width of NMOS : : Width of
PMOS: :Power: :Delay:

2) VDD: , Width of NMOS : : Width of
PMOS: :Power: :Delay:

Tools used for ASIC Flow:

1.
2.
3.

INCISIVE - Used for Functional Simulation
GENUS - Used for Synthesis and pre-Layout Timing Analysis
INNOVUS - Used for Physical Design

Getting Started :

Make sure the Licensing Server is switched ON and the client is connected to
server.”

Open the “counter” directory and make a right click to “Open in Terminal”.

To open the tools to be used, type in the command “csh” (Press Enter) followed
by “source /home/install/cshrc” <Or the path of tools whichever is
applicable>.

A welcome string “Welcome to Cadence Tool Suite” appears indicating
terminal ready to invoke Cadence Tools available for you.

Module 1: Creating an RTL Code

In order to create an RTL Code, you can open a text editor and type in your
Verilog code or VHDL Code.

1.

In the terminal, type in “gedit <filename>.v [OR] <filename>.vhdI”. The file
extensions depends on the type of RTL Code you write as shown.

Similarly, using same command, Test Bench also could be written as shown
below.

"timescale 1ns/lps

module counter(clk,m,rst,count);
input clk,m,rst;

output reg [7:0] count;
always@(posedge clk or negedge rst)
begin

if(!rst)

count=0;

else if(m)

count=count+1;

else

count=count-1;

end

endmodule

RTL Code for a 16-bit Synchronous Up-Down Counter

timescale iIns/ips
module counter test;
reg clk, rst._ m;
wire [15:8] count;
initial
begin
Clk=0;
rst=3;825;
rst=1;
end
initial
begin
m=1;
606 n=0;
rst=0;825;
rst=1;

2500 n=0G;

end

initial Ssdf_anmotate ("delays saf” |, counter test_counterl, ,“sdar_log™):
initial Ssdf_anmotate (“counter s47T° | counter test.counterl, _“sdf_ log”);

counter counterl{clk . m,rst, count);
always #F5 clk=—-clk;
initial S$monitor{ " Timeant rstanl) clhanlh caumtanah™, Stime _rst_ clk . count);

initial
21800 s$finmish;

endmodule

Test Bench for the Up-Down Counter

Module 2: Functional Simulation

1. To perform Functional Simulation, “Incisive” tool is to be used.
2. Inyour terminal, type the command “nclaunch -new” to open the tool.

NCLaunch

cadence’

MCLaunch 13.20-s005

Protected bw IS Patents:
5,09 5,4 54; 5,4 18,95 1; 5,605,695, 6,457,704 T,059,857; 7,424,703
TS5 116; 5,555,945, 6,265, 501; 6,165,765 6,501,575,

Coptright (C1 1995 2014 Cadence Desian Sestems, Inc. All iahts resensed worddwide.
Cadence and the Cadence logo are registered fademarks of Cadence Design Swstems, Inc.
all others are the properte of their respective holders.

Please Select Bun ode:

IMuI'tipIe Step I

Single Step (IRUN Only)

Help

Exit

3. Select “Multiple Step”. And then select “Create cds.lib”

Note : The ‘-new’ switch is used only for the first time the design is being run.
For the next time on wards, the command to be used could be ‘nclaunch’ only.

Create a cds.lib file = o »
Directory frooDeskiop/demo_e=amplesicounter — | |
1 lef
(9 it
I"‘*l | =

File name: |cds lib Save

Files of fype- Library Files (*lib) — | Cancel |

4. Save the cds.lib file. It is a tool file that holds the design location information
for easy access by the tool.

New cds.lib File

How would you like to configure the cds.lib file?

~ Include default libraries {vhdl or mixed design)
~~ Include IEEE pure libraries (vhdl or mixed design)
@ Don'tinclude any libraries (verilog design)

OK Cancel

5. Based on the Libraries available and the type of RTL Code written, one of the
three shown above is to be selected. Cadence tool suite provides default gpdk
libraries. Here, counter RTL is of Verilog Format and hence third option is
selected.

6. A new pop-up “nclaunch” opens which will contain all the .v and .vhdl files as
per the cds.lib file created.

7. Functional Simulation using Cadence runs in 3 stages:

-> Compilation of Verilog/VHDL Code and/or Test Bench
=> Elaboration of the Code & Test Bench Compiled
=» Simulating the Test Bench or Top Module[in absence of Test Bench]

8. Aset of tools are shown in the nclaunch window which refer to VHDL Compiler,
Verilog Compiler, Elaborator, Simulator corresponding from Left To Right.

9. Select the .v or .vhdl files to be compiled and launch Compiler. On successful
completion of compilation, on the Right hand Side, the modules appear under
“Worklib” .

10.Select the Module under Worklib and “Launch Elaborator” . On successful
completion of Elaboration, “Snapshots” are generated.

11.Select the Test Bench under snapshots and “Launch Simulator” .

12.The above steps are depicted under following snapshosts.

NCLaunch : froot/Desktop/counter

= o x

File Edit Tools Utilities Plug-Ins Help

cadence

Browsers: @l el Toals: ﬁ‘gé

%

Directnry:lfrnDt-’Desktnpfcnunter

ﬂ froot/Deskiop/counter/cds lib

...... E .

Bl INCA_libs
B lef

B i

Filters:| *.v *vhd *.whdl

nclaunchz=

¢ items selected

Design Browser 1 = SimVision - o x Q

[
FEile Edit View Select Explore Simulation Windows Help cadence
o) | o o2 Ty E9 SE S To: i ~EIE ol —N—R |
BUoa XDiiXe gaidrrREaBRME=EE| |
, |7 v viipsvime - G oup | valuew Send selected object(s) to target waveform window
‘TE" L - —! PAZ R {2 C0p] | SaGh TGS { Vakie {click and hold for a menu of other options)
-0k S8 S & Mmoo T
Design Browser x @ Objects " sAsthade] |
Scope: I @ Al Available Data :} i @ | HR Name o~ Valug "{ ncsim. key
[5] Al
= E3 simulator o @ an %
@O counter test bt | &I cOUNIf15G) h soocx
e @ m x
— | @~ x
i
=t
&
i
&
—
L
Find:|Stringw ~ s o
- — ~ [P = - B
_b Show contents: | In the signal list areav| M & (@ B g e =
@>d [1 object selected

The Design Browser pops-up and The Test Bench Module name can be seen on
the left and the Pin list on the right when selected. For Simulation, The number
of Pins / Ports to be simulated can be selected.

Make a right click on the selected and Select “Send to Waveform Window”.

In the waveform window, we can see different ports in the design. Now click
on the Run simulation key to start the simulation. Use the ‘pause’ key to
interrupt or stop the simulation. Use different options like zoom in, zoom out
etc to analyze the plot.

Waveform 1 = SimVision o x

File Edit View Explore Formal Simulation Windows Help cadence
P9 o Ny g 4 - 5. JdL SendTo: | N ¢ 3o N——l—
83 Cd & { 5 M-~ |y - 9 - BN Sx O @' WA
Search Names: Signalv > i i Search Times: Valuew -
= ~ - 4 1| g w R N TR 7 + = =1r
ijzr,mgp_. =[1,400,000 xpsvipR- 4 - W '.‘J l”’. Ll & O 1 40000003+ 0 Time: 37 10:1,400,000ps x| M =
X 5 a Run/Continue the simulation until the next breakpoint, or for the duration entered in the
0 ™ aselinev=0

Baseline = T field

£1| Cursor-Baseline w= 1 400 000p2

Name o~ Cursor o~ [3 ‘: ps »33.‘ ps .:;:.: A:u‘: _'\ ,000 OIJ.JIJ] il 2 [I:!]p:

o ok
MW count[15:0]
o m

o rat

BOOBEE

) 3 X

@ 35 \d Run/Continue the simulation until the next breakpoint, or for the duration entered in the time field 0 objects selected

Module 3: Synthesis

Inputs for Synthesis :

1. RTL Code (.v or .vhdl)
2. Chip Level SDC (System Design Constraints)
3. Liberty Files (.lib)

Expected Outputs of Synthesis :
1. Gate Level Netlist
2. Block Level Netlist

3. Timing, Area, Power reports

Synthesis is a 3-stage process which converts Virtual RTL Logic into Physical
Gates in order to give a Physical Shape to the design through Physical Design.

Synthesis runs in following stages :

* Translation - RTL Codes are compiled

* Elaboration / Mapping - Pieces of Logic are replaced with corresponding
Gates from Libraries with same Functionality

* Optimization - Tool tries to reduce cell count without affecting the
functionality

To run the synthesis, the following script can be used.

set db 1ib search path ./1ib/90

set_db library slow.lib

set_db hdl_search_path /

read hdl counter.wv

elaborate

read sdc constraints_top.sdc

synthesize -to mapped -effort medium

write_ sdf -timescale ns -nonegchecks -recrem split -edges check edge > delays.sdf

write hdl > counter_netlist.wv
write_ sdc > counter_sdc.sdc

gui_show

report timing > counter timing.rep
report power > counter_power.rep
report area > counter_cell.rep

report messages > counter_message.rep

Chip Level SDC is as follows :

create clock -name clk -period Z -waveform {8 1} [get_ports "clk"]
set_clock_transition -rise 0.1 [get_clocks "clk"]

set_clock_transition -fall 0.1 [get_clocks "clk"]

set clock uncertainty ©.81 [get ports "clk"]

set_input delay -max 1.8 [get ports "rst"] -clock [get clocks "clk"]
set_output_delay -max 1.0 [get_ports “"count"] -clock [get_clocks "clk"]

Close out all INCISIVE windows and in the same terminal type in the following
command to run Synthesis.

genus -f rc_script.tcl

The tcl [Tool Command Language] script runs executing each command one
after the other.

A window of Genus GUI pops — up with the top hier cell on the left top. Make a
right click and select Schematic Viewer = In Main.

File DFT Floorplan Power Timing Tools Windows Help cadence

Hierarchy | HDL Schematic

HaQaolowneads [l

--——iih
I I —-—_._IIIIIII

Design is mapped

The Gate level Circuit that implements the RTL Logic can be seen and analysed.

As from the script, Block Level SDC, Gate Level Netlist, Timing, Power and Area
reports are generated which are readable.

The Timing report gives the path with Worst timing.

The area report gives Cell count and Total area occupied by them.

The total power consumed by those cells are given in Power report.

Module 4 : Physical Design
Mandatory Inputs for PD :

Gate Level Netlist [Output of Synthesis]
Block Level SDC [Output of Synthesis]
Liberty Files (.lib)

LEF Files (Layer Exchange Format)

R L

Expected Outputs from PD :

1. GDS Il File (Graphical Data Stream for Information Interchange — Feed In for
Fabrication Unit).

Close out all windows relating to Genus and in the terminal, type the command
innovus (Press Enter)

For Innovus tool, a GUI opens and also the terminal enters into innovus
command prompt where in the tool commands can be entered.

Physical Design involves 5 stages as following :

After Importing Design,

* Floor Planning

* Power Planning

* Placement

* CTS (Clock Tree Synthesis)
* Routing

Module 4.1 : Importing Design

To Import Design, all the Mandatory Inputs are to be loaded and this can be
done using script files named with .globals and .view/.tcl

Generated by Cadence Encountnr L-.L:-SO47 1

B

O0S: Linux x86 64(Host D cadonca)
Generated on: Tue May = 2:16:38 201¢€

Design:

- Command save global Default. globals

#
Version !.!
#

set ::Timelib::tsgMarkCellLatchConstructFlag !
set conf_qgxconf_file {NULL}

set conf_qxlib_file {NULL}

set defHierChar {/}

set init_design_settop O

set init_gnd _net {VSS}

set init_lef file {lef/gsclib09@ translated.lef lef/gsclib@90 translated ref.lef}
set init_mmmc_file {Default.view}

set init_pwr_net {VDD}

set init_verilog {counter_netlist.v}

set 1sgOCPGainMult 1.00G00O0

set pegDefaultResScaleFactor 1.000000

set pegDetailResScaleFactor 1.000000

Globals File to import design using Mandatory Inputs

The Globals file reads in the LEF’s and Gate Level Netlist and .view file
implicitly.

Version:1.0 MMMC View Definition File

Do Mot Remove Above Line

create library _set -name MAX timing -timing {/root/Desktop/counter/lib/90/slow.lib}
create library_set -name MIn_timing -timing {/rooct/Desktop/counter/lib/98/fast.lib}
create constraint _mode -name Constraints -sdc files {counter sdc.sdc}

create delay corner -name Max delay -library_set {MAX timing}

create delay corner -name Min _delay -library_set {MIn_timing}

create_analysis view -name Worst -constraint_mode {Constraints} -delay corner {Max_delay}
create_analysis view -name best -constraint_mode {Constraints} -delay corner {Min_delay}
set_analysis _view -setup {Worst} -hold {best}

The .view file reads Liberty Files and Block Level SDC to create various PVT
Corners for analysis.

In the terminal command prompt, type the commands as shown. The design is
imported and “Core Area” is calculated by tool and shown on GUI.

File Edit View Search Terminal Help

Options:

Date: Tue May 14 12:13:39 2019

Host: KrishnaCadence (x86 64 w/Linux 3.10.0-862.el7.x86 64) (2cores*dc
pus*Intel(R) Core(TM) i5-2520M CPU @ 2.58GHz 3072KB)

0s: Red Hat Enterprise Linux Server release 7.5 (Maipo)

License:

12:13:39 (cdsimd) OUT: "Innovus Impl System" root@KrishnaCadence
ed
sage to set your required CPU count.

Cadence root ohoasS.

ze limit to change the value.
**INFO: MMMC transition support version v31-84

[INFO] Loading PVS 16.12-5208 fill procedures
innovus 1> source Default.globals

1.000000

innovus 2> init desigm]

invs Innovus Implementation System 17.1 checkout succeed
8 CPU jobs allowed with the current license(s). Use setMultiCpul

Create and set the environment variable TMPDIR to /tmp/innovus temp 6984 Krishna

Change the soft stacksize limit to 0.2%RAM (31 mbytes). Set global soft stack si

The Horizontal Lines on the GUI across the Core Area are alternative VDD and
VSS tracks and Standard Cell Placement Rows.

j File View Edit Partition Floorplan Power Place ECO Clock Route Timing Verify PVS »Q online he cadence

| Layout | v
= IRg~*A-240% Bl Q Q & -0 |4 B & L »|F »
BU#-0 - EBR LB ®-=-&)5
= All Colors
y :

" v
7 £l Instance vV
4 B ® Type o
"u - Block v v
== StdCell v ™
e Cover v v
= Physical LA
10 UAU4 —
cfifa Arealo [ilw w
- Black Box ._g v
= - Function v

E - Status vV
it - Module vy
A B Cell LYICY LJ

- Blockage CIC

- Row LIFL)

- Floorplan v

- Partition AT

- Power a e

(- Overlay Vv

- Track L

- Net L4

[#- Route vy

- Layer vy
Poly(0) vy
Cont(0) v v
. Vasan N ..

Detail X Speed

/E” Click to select single object. Shift+Click to de/select multiple objects. 0 65.21000, 32.63650 l

Module 4.2 : Floorplan
Steps under Floorplan :
1. Aspect Ratio [Ratio of Vertical Height to Horizontal Width of Core]
2. Core Utilisation [The total Core Area % to be used for Floor Planning]

3. Channel Spacing between Core Boundary to 10 Boundary

Select Floorplan - Specify Floorplan to modify/add concerned values to the
above Factors.

On adding/modifying the concerned values, the core area is also modified.

! Specify Floorplan - o0 x l

Basic | Advanced

Design Dimensions

Specify By: & Size _ Die/lD/Core Coordinates

® Core Size by: ® Aspect Ratio: Ratio (HAW): b.85?39883
& Core Utilization: 0.699933
— Cell Utilization:

— Dimension:

 Die Size by:

Core Margins by: @ Core ta 10 Boundary

_ Core to Die Boundary

Core to Left: g Core to Top: g
Core to Right: 8 Core to Bottom: 8
Die Size Calculation Use: — Max 10 Height & Min IO Height
Floorplan Origin at: ® Lower Left Corner _ Center
Unit: Micron

@& ey el Heb

File View Edit Partition Floorplan Power Place ECO Clock Route Timing Verify PVS »Q or cadence
Layout €3
T |Re~-A-248% |8l Q Q Q -0 (&% B & O »|F »
Bo#-c c-BaB®e LB -=-% 4% & (&)
= 25 AllColors
2 ¢ .
p e VS
- £ Instance vV
= E- @ Type AU
[Block [lvw
StdCell CAC4
L Cover CACS
=5 Physical 2 AT
10 CAU4 =
<H> Areal0 [ilv ¥
Black Box .z v~
Xz — Function vy
:\"\ _ Status v il
H - Module vy
o B Cell L)
42 [#- Blockage LI M
Row LY
Floorplan = i
Partition AT
Power LT
Overlay bl v
Track L
Net Al
Route vV
EH-Layer v
Poly(0) v
Cont(0) Eiv v
.e tasan [N —_
Detail U Speed

Q I (:] Click to select single object. Shift+Click to de/select multiple objects. 0 52.77800, 34.14600

The Yellow patch on the Left Bottom are the group of “Unassigned pins” which
are to be placed along the 10 Boundary along with the Standard Cells [Gates].

Module 4.3 : Power Planning

Steps under Power Planning :
Connect Global Net Connects
Adding Power Rings

Adding Power Strings
Special Route

RWNRE

During the stage of Importing Design, under the Globals file, Two command
lines state the names of Power and Ground Nets.

However, in order to Current flow through these Power nets, they are to
converge at a point, preferably a common net connected to a Pin.

Under Connect Global Net Connects, we create two pins, one for VDD and one
for VSS connecting them to corresponding Global Nets as mentioned in Globals
file.

Select Power = Connect Global Nets.. to create “Pin” and “Connect to Global
Net” as shown and use “Add to list”.

Click on “Apply” to direct the tool in enforcing the Pins and Net connects to
Design and then Close the window.

Global Net Connections - o x

Connection List Power Ground Connection
VDD:PIN:* VDD:Module() Connect
VSSPIN:* . VSS;Module()

& Pin

~ Tie High

- Tie Low

Instance Basename: *

Pin Name({s): V5SS

 NetBasename

Scope
W ~ Single Instance:
Under Module:

-

~ Under Power Domain
« Under Region:

— Apply All

To Global Net: VSS
.. Override prior connection

. Verbose Output

)] Update Delete
e, oncel e
oy .

In order to Tap in Power from a distant Power supply, Wider Nets and Parallel
connections improve efficiency. Moreover, the cells that would be placed
inside the core area are expected to have shorter Nets for lower resistance.

Hence Power Rings [Around Core Boundary] and Power Stripes [Across Core

Boundary] are added which satisfies the above conditions.

Select Power - Power Planning - Add Rings to add Power rings ‘around Core
Boundary’.

Basic Advanced
Net(s): VDD VSS

Ring Type

& Core ring(s) contouring

fitound gore bovndantk

_ Block ring(s) around

Via Generation = Mode

Add Rings

Preview

— Exclude selected objects

~ User defined coordinates:

Ring Configuration

Layer: Width: Spacing:
Top Melal?(g)H b 18 05
Bottom: Metal9(9) H ! 1.8 05
Left Metalg(8)V> 18 05
Right MetalB(B)V » 18 05
o |Offset: Center in channel] Update
(0% _ Apply Defoults.

—
* Select the Nets from Browse option OR Directly type in the Global Net

Names separated by a space being Case and Spelling Senstive.

* Select the Highest Metals marked ‘H’ [Horizontal] for Top and Bottom and
Metals marked ‘V’ [Vertical] for Right and Bottom. This is because Highest
metals have Highest Widths and thus Lowest Resistance.

* Click on Update after the selection and “Set Offset : Center in Channel” in
order to get the Minimum Width and Minimum Spacing of the corresponding

Metals and then Click “OK”.

* Similarly, Power Stripes are added using similar content to that of Power
Rings.

Add Stripes = o x

Basic Advanced Via Generation Mode Preview
Set Configuration
Net(s): VDD VSS -

Layer: Metal9(9) » Directions: _ Vertical & Horizontal

Width: 1.8 Spacing: 0.5 Update

Set Pattern

« Set-to-setdistance: 100 #. Number of sets: |3 | « Bumps Overb
— Over P/G pins | 1y TP il aye
il
1 bloc L)

« Over Physical Pins ir f g

Stripe Boundary
& Corerning . Padring: ’ « All domains
. Design boundary « . Each selected block/domainffence

— Specify rectangular area

« Specify rectilinear area

First/Last Stripe
Start from: . Left — Right o Top & Bowom

® Relatve from core or selecred area Start: 1 Stop: 1

« Absolute

m Apply Defauls Cancel Help

Factors to be considered under Power Stripes :

* Nets

* Metal and It’s Direction

* Width and Spacing [Updated]

* Set to Set Distance = (Minimum Width of Metal + Min. Spacing) x 2

| Hle ¥Iew EOQIL FArUUON HOOMDIAN FOWEr FIACE ELU LIOCK HOUTE 1LIMING Vermy Fvs 4 onine nelf caagence

| Layout |@
s Y]] A ~ @ . =
™= I T Y IRI~"#-240% | Q Q QA -0 | &4 |BEa d »|E
BO#-0c«- BaHB@lAln = -4 4k B 2 (@)
[All Colors
-l . ’
Z NSl
i EHInstance v
i B & Type s
i i Block v v
= - StdCell v
= o Cover v ¥
== Physical v v
0 v v =
H - Arealo ¥ v
- Black Box [l ¥
- - Function ¥
¥ G- Status ¥V
@ - Module ¥
5 B Cell ==
a - Blockage - bd
[Row - =
& Floorplan LI
B Partition s
- Power - =
B Overlay v
B Track e
- Net W
- Route)
Bl Layer)
Poly(0) v v
- Cont(0) v v
H aa s basan = =
Detail U Speed
IE,@| 0 50.15100, 48.69650

On adding Power Stripes, The Power mesh setup is complete as shown.
However, There are no Vias that could connect Metal 9 or Metal 8 directly with
Metal 1 [VDD or VSS of Standard Cells are generally made up of Metal 1].

The connection between the Highest and Lowest Metals is done through
Stacking of Vias done using “Special Route”.

To perform Special Route, Select Route - Special Route - Add Nets - OK.

After the Special Route is complete, all the Standard Cell Rows turn to the
Color coded for Metal 1 as shown below.

The complete Power Planning process makes sure Every Standard Cell receives
enough power to operate smoothly.

Module 4.4.1 : Pre - Placement

* After Power Planning, a few Physical Cells are added namely, End Caps and
Well Taps.

* End Caps : They are Physical Cells which are added to the Left and Right
Core Boundaries acting as blockages to avoid Standard Cells from moving out
of boundary.

* Well Taps : They act like Shunt Resistance to avoid Latch Up effects.

1. To add End Caps, Select Place = Physical Cell > Add End Caps and “Select” the
FILL's from the available list. Higher Fills have Higher Widths. As shown Below,
The End Caps are added below your Power Mesh.

fiew Edit Partition Floorplan Power Place ECQ Clock Route Timing WVerify PVS 3/ hely cadence
el +]
= £ = |GA-"#-24 0% |8 Q Q @ Q-0 L4 0 & & |5 »
18 -0 % -[d W R e 1L E Ly - O B8 & (ER)
_ All Colors
Ml
B Row - =
-- Floorplan =/ |
- Partition e
El- Power ==
- Overlay =]
--‘I'racl-(L
Bl Net ¥
B Route s
B} Layer v
- Poly(0) _ ¥
- Cont(0)] w
- CMetal1(1) Bl v
- Wia1(1) 1
- Metal2(2) o
- Via2(2) Bl w|=
- Metal3(3)] w
= Wia3(3) W
- Metald4) _ ¥
A flad{d)] v
- Metal5(5)] w
- Wia5(5) v .
- Metal6(g) ¥
- \flaB(6) v
- Metal 7(7) N
- Wiad(7) o

Detail U Speed

2. To add Well Taps, Select Place = Physical Cell > Add Well Tap - Select -
FillX [X = Strength of Fill = 1,2,4 etc] - Distance Interval [Could be given
irange of 30-45u] = OK

File View Edit Partition Floorplan Power Place ECO Clock Route Timing Verify PVS

Layout (+]
= Jd S IR~ - X40% B0 Q Q @ -0

i@@‘?ﬁ?v@ %'% %%'% 1@%“_%‘ 5'“75'&3 114},%

Module 4.5 : Placement
1. The Placement stage deals with Placing of Standard Cells as well as Pins.

2. Select Place - Place Standard Cell = Run Full Placement - Mode - Enable
‘Place 1/0 Pins’ = OK = OK.

Place - n] x

Run Full Placement _ Run Incremental Placement _ Run Placement In Floorplan Mode

Optimization Options

¥ Include Pre-Place Optimization

Mumber of Local CPLYs): 1 . Set Multiple CPU... |

_ Apply | | Mode.. | Defaults, | Cancel / | Help

Mode Setup - o x

List of Modes Placement Mode
CTS Placement | RefinePlace
EarlyGlobalRout
EndCap & Congestion Effort
Filler — Low _ Medium _ High & Auto
NanoRata Run Placement In FloorPlan Mode
OasisOut
Optimization » Run Timing Driven Placement
&~ Enable Module Plan
ScanReorder ~ Enable Clock Gating Awareness
StreamOut __ Enable Power Driven
TieHiLo

~ Ignore Scan Connections

~ Reorder Scan Connection

__ lgnore Spare Cell Connections

~ i

__ Hierarchy Aware Spare Cell Placement

— Specify Maximum Density

Layers Checked For Pin Access Select...
- —
Specify Maximum Routing Layer 1 '
Set Defaults
SO |
EROR _aeply _Cancel el

All the Standard Cells and Pins are placed as per the communication between
them, i.e., Two communicating Cells are placed as close as possible so that
shorter Net lengths can be used for connections as Shorter Net Lengths enable
Better Timing Results.

Placed Design

; All Colors .

MaSL
B Row ==
-- Floorplan =) i
Bt Partition v
-- Power L]
B Overlay v
E-Track L
B Net ¥
-- Route Lt
El-Layer v
- Poly(0) _ ¥
- Cont(0) B
- Metal1(1) _ v
= Mial(l) v
- Metal2(2) _ v
- Wia2(2) EEy -
- Metal3(3) _ v
= Wia3(3) _ ¥
- Metald(4) v
= Wiad(4) B
- OMetals(s) [l v
- Wia5(3) v .
- Metals(6) v
- Wiab(h) G
- OMetal?(7) [v
= Mia7(7d) _ ¥
Detail U Speed

Standard Cells Placed

You can toggle the Layer Visibility from the list on the Right.

Report Generation and Optimization :

=> Timing Report :

To generate Timing Report, Timing - Report Timing - Design Stage — PreCTS

=> Analysis Type — Setup - OK

The Timing report Summary can be seen on the Terminal.

Timing Analysis - 0

Basic | Advanced

__ Use Existing Extraction and Timing Data
Design Stage

« Pre-Place ® Pre-CTS _ Post-CTS _ Post-Route _ Sign-Off

Analysis Type
& Setup - Hold

Include 51

Reporting Options

Number of Paths: 50

Report file(s) Prefix: counter_preCTS

Output Directory: timingRepaorts

Apply Cancel Help

root@KrishnaCadence:~/Desktop/counter

File Edit View Search Terminal Help

Worst

I o Fommmm e e +

| Setup mode | all | reg2reg | default |
e o fommmm e e +

| WNS (ns):| -0.171 | -0.171 | ©.571 |

| TNS (ns):| -0.570 | -0.570 | 0©.000 |

| Violating Paths:| 5 | 5 | 0

| A1l Paths:| 78 | 39 | 48

P T Fom e o dommm e -

Frmmmm e e e e -
| | Real | Total |
| DRVs L L LR TR R i e R R TR
| | Nr nets(terms) | Worst Vio | Nr nets(terms) |
b m e Frmmm oo o e -
| max_cap | 0 (0) | ©.000 | o (0)

| max_tran | 0 (0) | 0.000 | 0 ()

| max_fanout | 0 (0) |] | 0 (0)

| max_length | 0 () | 0 | 0 (@)
T e e e e T +

-> Area Report :

To generate Area Report, Switch to the Terminal and type the command,

report_area to see the Cell Count and Area Occupied.

innovus 3= ’ ’ ’
innovus 3> report area

Depth Name #Inst Area (um™2)
0 counter 84 672.8841

1

innovus 4> []

=-> Power report :
To generate Power Report, In the Terminal type the command

report_power to see the Power Consumption numbers.

* report _power
*

Total Internal Power: 0.19207683 90.2531%

Total Switching Power: 0.01693992 7.9597%

Total Leakage Power: 0.00380342 1.7872%

Total Power: 0.21282017

Group Internal Switching Leakage Total Percentage
Power Power Power Power (%)

Sequential 0.1793 0.007572 0.002415 0.1892 §8.92

Macro 0 0 0 0 0

10] 0 0] 0

Combinational 0.01282 0.009368 0.001388 0.02358 11.08

Clock (Combinational) Q 0] 0] 0] 0]

Clock (Sequential) 0 0 0] 0

Total 0.1921 0.01694 0.003803 0.2128 100

Rail Voltage Internal Switching Leakage Total Percentage
Power Power Power Power (%)

Default 0.9 0.1921 0.01694 0.003803 0.2128 100

Design Optimization :

To optimize the Design, Select ECO - Optimize Design - Design Stage
[PreCTS] = Optimization Type — Setup - OK

Optimization -

Design Stage
& Pre-CTS « Post-CT5
Optimization Type

» Setup

. Incremental

#& Design Rules Violations
¥ Max Cap
¥ Max Tran

_ Max Fanout

Include 51 | S||OpLiDAS:
kel

b EﬂJth s % Eﬂﬂ[je‘“ s N

. Post-Route

Hold

Default | Close

Help

**pptDesign ... cpu = 0:80:30, real = 0:00:38, mem = 1065.9M, totSessionCpu=0:15:31 **

Setup views included:

Worst
B Fmmmm s Frmmm s domm s
| Setup mode | all | reg2reg | default
e Fmmm s Frmmm e Fomm s
WNS (ns):| ©.004 | 0.004 | @.576
TNS (ns):| ©.000 | 0.000 | 0.000
Violating Paths: |] | 2] |]
All Paths:| 78 | 39 | 48
e Fommmm - Fommmme e Fommmmmn
e e +
| Real
DRVs SRR E R EEEE TR SRR EE PP +
| Nr nets(terms) | Worst Vie |
e i e R +
max_cap | 0 (9) | ©.o00 |
max tran | 0 (08) | ©.000 |
max_fanout | 0 (9) |] |
max length | 0 (08) |] |
e B B +

Density: 81.031%
Routing Overflow: 0.00% H and 0.00% V

**pptDesign ... cpu = 0:80:30, real = 0:00:38, mem = 1066.2M, totSessionCpu=0:15:32 **

*** Finished optDesign ***
innovus 5=

-+
\
-+
\
\
\
\
-+
,,,,,,,,,,,,,,,,,, n
Total |
,,,,,,,,,,,,,,,,,, |
Nr nets(terms) |
,,,,,,,,,,,,,,,,,, ¥
0 (0) |
8 (0) |
0 (0) |
0 (0) |
__________________ ¥

J B

This step Optimizes your design in terms of Timing, Area and Power.

You can Generate Timing, Area, Power in similar way as above report Post —
Optimization to compare the Reports.

Module 4.6 : Clock Tree Synthesis

The CTS Stage is meant to build a Clock Distribution Network such that every
Register (Flip Flop) acquires Clock at the same time (Atleast Approximately) to
keep them in proper communication.

A Script can be used to Build the Clock Tree as follows :

add ndr -width {Netall 6,12 Metal2 0.14 Metal3 0.14 Metald .14 Metal’ 0.14 Netal6 0.14 Metal? 0,14 Metal® 6,14 Hetald 0.14 } -spacing {Metall 6.12
Metal? 0,14 Metal3 0.14 Netald .14 Metald 0.14 Metal6 0.14 Metall 0.14 Metals 0.14 Metald 0,14 } -nane W25

create_route type -nane clkroute -non default rule 2425 -botton preferred layer Metald -top preferred layer Metalb

set ccopt property route type clkroute -net typa trunk

set ccopt property route type clkroute -net type leaf

set ccopt property buffer cells {CLKBUFXB CLKEUFXIZ}

set_ccopt property inverter cells {CLKINVAB CLKINVXIZ)

set ccopt property clock gating cells TLATNTSCA®

create ccopt clock tree spec -file ccopt.spec

innovus 2> source ccopt.spec
Extracting original clock gating for clk...

clock _tree clk contains 16 sinks and 0 clock gates.
Extraction for clk complete.
Extracting original clock gating for clk done.
_hecking clock tree convergence...

_hecking clock tree convergence done.

Source the Script as shown in the above snapshot through the Terminal and
then Select Clock = CCOpt Clock Tree Debugger - OK to build and view clock
tree.

CTD Configuration - o X

¥ Window ID Name ctd_window
Window Title

—. Unit Delay Mode

cadence

The Red Boxes are the Clock Pins of various Flip Flops in the Design while
Yellow Pentagon on the top represents Clock Source.

The Clock Tree is built with Clock Buffers and Clock Inverters added to boost up
the Clock Signal.

Report Generation and Design Optimization :

CTS Stage adds real clock into the Design and hence “Hold” Analysis also
becomes prominent. Hence, Optimizations can be done for both Setup &
Hold, Timing Reports are to be Generated for Setup and Hold Individually.

Setup Timing Analysis :

— cmmrmamrma S ey = ¥ Y SES ———- TR - -

Timing Analysis - 0 x

Basic | Advanced

__ Use Existing Extraction and Timing Data
Design Stage

— Pre-Flace _ Pre-CTS 3 . Post-Route . Sign-Off

Analysis Type
& Setup . Hold
de 5

Reporting Options

Mumber of Paths: 50

Report file(s) Prefix: counter_postCTS

Output Directory: timingReports

@ oy el eb

Hold Timing Analysis :

Timing Analysis - o

Basic | Advanced
— Use Existing Extraction and Timing Data

Design Stage

Analysis Type

v Setup & Hold

nelod

Reporting Options
Number of Paths: 50
Report file(s) Prefix: counter_postCTS

Output Directory: timingReports

m Apply Cancel Help
For Area and Power Report Generation,

report_area & report_power commands can be used.

Design Optimizations : EEETnES - B X

Design Stage
i Pre-CT5 & Post-CT5 - Post-Route
Optimization Type
o Setup iHcId
— Incremental
#& Design Rules Violations

» Max Cap

» Max Tran

_ Max Fanout

Include SI | SIOptionRs:.
il

m . Apply | Mode.. | Default | Close | Help |

Module 4.7 : Routing

* All the net connections shown in the GUI till CTS are only based on the
Logical connectivity.

* These connections are to be replaced with real Metals avoiding Opens,
Shorts, Signal Integrity [Cross Talks], Antenna Violations etc.

To run Routing, Select Route - Nano Route -» Route and enable Timing
Driven and Sl Driven for Design Physical Efficiency and Reliability.

NanoRoute = o x
Routing Phase
» Global Route
 Detail Route Start Iteration default End Iteration default

Post Route Optimization __ Optimize Via _ Optimize Wire

Concurrent Routing Features

¥ Fix Antenna __ Insert Diodes Diode Cell Name

Congestion Timing

& Timing Driven Effort 5 ! SMART.

&=]

__ Post Route S 51 Victim File = |

__ Litho Driven

__ Post Route Litho Repair

Routing Control

_ Selected MNets Only Bottom Layer default Top Layer default

_ ECO Route

__ Area Route Area | select Anea and Route
Job Control

» Auto Stop

Number of Local CPU{s): 1

Number of CPU(s) per Remote Machine: 1

Number of Remote Machine{s): 0
Set Multiple CPU...

m Apply Attribute Mode... Save Load Cancel Help

Report Generation and Design Optimization :

Setup Report :

Hold Report :

Timing Analysis = =]

Basic Advanced

__ Use Existing Extraction and Timing Data

Design Stage

. Pre-Place _ Pre-CTS _ Post-CTS v Sign-Off

Analysis Type
& Setup — Hold
__ Imclude 51

Reporting Options

Mumber of Paths: 50
Report file(s) Prefix: counter_postRoute

Qutput Directory: timingReports
@B sy el _beb
Timing Analysis = o

Basic Advanced
Use Existing Extraction and Timing Data

Design Stage
— Pre-Place . Pre-CTS .. Post-CTS & Post-Route . Sign-Off

Analysis Type

' Setup -

_ Include sI

Reporting Options

Number of Paths: 50
Report file(s) Prefix: counter_postRoute
Qutput Directory: timingReports

Cancel Help

& | ey

Area and Power Reports :

Use the commands report_area and report_power for Area and Power
Reports respectively.

Design Optimization :

innovus 5>
innovus 5= setAnalysisMode -analysisType onChipVariation -cppr both
innovus 6> []

Enter the above shown command in the Terminal in order to run the Design
Optimization first Post-Route.

Optimization - o x
Design Stage
— Pre-CTS < Post-CTS & {Post-Route’
Optimization Type
» Setup » Hold

. Incremental

(»

Design Rules Violations
» Max Cap
» Max Tran

_ Max Fanout

Include 51 | 5| 0ptions.

m Apply Mode... Default Close Help

The Report generation is same as shown prior to Design Optimization.

Saving Database :

1. Saving Design => File > Save Design - Data Type : Innovus -
<DesignName>.enc - OK

Save Design - O x

Data Type:® Innovus . OA

File Marme: n:-::unter_route.enc|] = |

m Apply Cancel Help

2. Saving Netlist => File - Save - Netlist - <NetlistName>.v - OK

hl

Save MNetlist — a1 x

Include Intermediate Cell Definition

Include Leaf Cell Definition

Metlist File:[cc:unter_route.u|] E |

m Cancel Help

It is recommended to save Netlist and Design at every stage.

To restore a Design Data Base, type source <DesignName>.enc in the terminal.

3. Saving GDS => File - Save -> GDS/OASIS - <FileName>.gds - OK

GDS/OASIS Export = o x
Output Format & GDSII/Stream — DASIS
Output File | couonter_route.enc =
Map File streamQut.map E

Library Mame DesignLib

__ Structure Mame counter

__ Aftach Instance Name to Attribute Number

__ Attach Net Name to Attribute Number
__ Merge Files _ Uniguify Cell Names

_ Stripes 1
__ Write Die Area as Boundary
__ Write abstract information for LEF Macros

Units | 2000 k
e —

Mode | ALL b
e —

m Apply Cancel Help

The GDS File is a Binary Format File which is not Readable and is fed to the
Fabrication unit with data of various layers used depicted in terms of
Geometrical Shapes.

Design and analysis of Full Adder
verilog code:

module fa(input a,b,cin,outputs,cout);
assign s=a’b”\cin;

assign cout=(a&b)|(b&cin)|(a&cin);
endmodule

Test Bench:

module fa_tb();

reg a,b,cin;

wire s,cout;

fa dut(a,b,cin,s,cout);
initial

begin
cin=0;b=0;a=0;
#50 cin=0;b=0;a=0;
#50 cin=0;b=0;a=1;
#50 cin=0;b=1;a=0;
#50 cin=0;b=1;a=1;
#50 cin=1;b=0;a=0;
#50 cin=1;b=0;a=1;
#50 cin=1;b=1;a=0;
#50 cin=1;b=1;a=1;
end

endmodule

Design and analysis of 3 to 8 Decoder
Verilog code
module dec328(input A,B,C,G1,G2A,G2B, output [7:0] Y);
reg [7:0] Y;
always@(A,B,C,G1,G2A,G2B)
begin
if({G1,G2A,G2B}==3'h100)
begin
case({A,B,C})
3'b000: Y=8'011111110;
3'b001: Y=8'011111101;
3'0010: Y=8'011111011;
3'b011: Y=8'011110111;
3'v100: Y=8'011101111;
3'0101: Y=8'011011111;
3'0110: Y=8'010111111;
3'b111: Y=8'001111111;
endcase
end
else
Y=8011111111;
end
endmodule

Test bench:

module dec328_tb();

reg A,B,C,G1,G2A,G2B,;
wire [7:0]Y;

dec328 uut(A,B,C,G1,G2A,G2B,Y);
initial begin
G1=0;G2A=0;G2B=0;#100;
G1=1;G2A=0;G2B=0;
A=0;B=0;C=0;#100;
A=0;B=0;C=1;#100;
A=0;B=1;C=0;#100;
A=0;B=1;C=1;#100;
A=1;B=0;C=0;#100;
A=1;B=0;C=1;#100;
A=1;B=1;C=0;#100;
A=1;B=1;C=1;#100;

end

endmodule

Design and analysis of 8-bit counter
Verilog code:

module counter(input CLK,CLR,E,output reg [7:0] count);

always@(posedge CLK)
begin
if(CLR)
count<=0;
else if(E)
if(count==4'b1111)
count<=0;
else
count<=count+1;
end

endmodule
Test bench :

module counter_th();

reg CLK,CLR,E;
wire [7:0]count;

counter uut(CLK,CLR,E,count);

initial

CLK=0;

always #10 CLK=~CLK;
initial begin

CLR=1;

#100 CLR=0;

#100 E=1,
end

endmodule

Design and analysis of m-bit shift register:

Verilog code:

module shiftregnbit(CLK,W,RESET,Q);
parameter m=4;

input CLK,W,RESET;

output [1:m]Q;

reg [1:m]Q;

integer K;

always@(posedge CLK or negedge RESET)
if('RESET)

Q<=0;

else

begin

for(k=m;k>1;k=k-1)
Q[k]<=Q[k-1J;

Q1]<=W;

end

endmodule

Test bench:

module shiftregnbit_tb();

reg CLK,RESET,W;

wire [3:0]Q;
shiftregnbituut(CLK,W,RESET,Q);

initial

CLK=0;

always #10 CLK=~CLK;
initial begin
RESET=0;

#100 RESET=1;W=0;
#100 W=1;

#100

#100 W=0;

#100;

end

endmodule

	R20 Regulation
	LIST OF EXPERIMENTS
	IMPLEMENTATION OF 4X4 ARRAY MULTIPLIER
	Implementation of a 4-Bit Arithmetic & Logic Unit
	Implementation of Flip Flops: SR, JK,T,D
	1. Design of NMOS Inverter
	Tools used:
	Circuit:
	Procedure: Refer Annexure I
	Testbench:
	Simulation Results:
	Result:

	2. Design of CMOS Inverter
	Tools used:
	Circuit:
	Procedure: Refer Annexure I
	Testbench:
	Simulation Results:
	Result:

	3. Design of 2-input CMOS NOR gate
	Tools used:
	Circuit:
	SimulationResults:
	Result:

	4.Design of 2-input NAND Gate Design
	Tools used:
	Circuit:
	Simulation Results:
	Result:

	5.Design D- Flip Flop
	Tools used:
	Circuit:
	Simulation Results:
	Result:

