
 VLSI DESIGN LAB

R20 Regulation

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING,

Lakireddy Bali Reddy College of Engineering (AUTONOMOUS),

L.B.Reddy Nagar, MYLAVARAM – 521230.

VLSI DESIGN LAB

LIST OF EXPERIMENTS

PART-1: VLSI FRONT END DESIGN USING XILINX TOOL:

1. Implementation of Carry-Look-Ahead adder.

2. Implementation of 4 X 4 Array Multiplier.

 3. Implementation of a 4-bit ALU.

4. Implementation of Zero /One Detector.

5. Implementation of flip flops: SR, D, JK, T.

PART-2: VLSI BACK END DESIGN USING CADENCE/MENTOR GRAPHICS TOOLS:

PART-2.1: Full Custom Design:

 1. Design and analysis of NMOS Inverter.

 2. Design and analysis of CMOS Inverter

3. Design and analysis of CMOS NOR gate.

 4. Design and analysis of CMOS NAND gate.

 5. Design and analysis of CMOS D- Flip Flop

PART-2.2: Semi Custom Design

 1. Design and analysis of Full Adder

2. Design and analysis of Decoder

 3. Design and analysis of 8- bit Binary Counter

4. Design and analysis of Shift Register

 5. Design and analysis of Sequence Detector Note: Minimum of 3 experiments from part-1 and

1

AIM: To design and simulate carry-look- a head adder using Xilinx's VIVADO and its implementation on Zed

board Evaluation and Development Kit

COMPONENTS & TOOLS REQUIRED:

Target devices: Xilinx Zynq-7000- Zed board Evaluation and Development Kit/Zybo board

Tools: Xilinx VIVADO suite

Preferred language- Verilog

THEORY:

DESIGN OF CARRY LOOKAHEAD ADDERS :

To reduce the computation time, there are faster ways to add two binary numbers by using carry lookahead

adders. They work by creating two signals P and G known to be Carry Propagator and Carry Generator. The

carry propagator is propagated to the next level whereas the carry generator is used to generate the output carry,

regardless of input carry. The block diagram of a 4-bit Carry Look ahead Adder is shown here below

The corresponding boolean expressions are given here to construct a carry lookahead adder. In the carry-look

ahead circuit we need to generate the two signals carry propagator(P) and carry generator(G),

Pi = Ai ⊕ Bi ….(1)

Gi = Ai · Bi ….(2)

The output sum and carry can be expressed as

Sumi = Pi ⊕ Ci ….(3)

Ci+1 = Gi + (Pi · Ci) ….(4)

Using equation(4) the Boolean function for the carry output of each stage is obtained as

C1 = G0 + P0 · C0

C2 = G1 + P1 · C1 = G1 + P1 · G0 + P1 · P0 · C0

C3 = G2 + P2 · C2 = G2 P2 · G1 + P2 · P1 · G0 + P2 · P1 · P0 · C0

C4 = G3 + P3 · C3 = G3 P3 · G2 P3 · P2 · G1 + P3 · P2 · P1 · G0 + P3 · P2 · P1 · P0 · C0

Implementation of Carry-Look-Ahead adder

EXP NO -1

DATE:

2

The carry-look ahead 4-bit adder can also be used in a higher-level circuit by having each CLA logic circuit

produce a propagate and generate signal to a higher-level CLA logic circuit.

VERILOG PROGRAM:

module Carry_look_ahead(

 input [3:0] a,b,

 output [4:0] s

);

 wire [4:0] c;

 wire [3:0] g,p,sum;

 // Generate signals

 assign g[0] = a[0] & b[0],g[1] = a[1] & b[1],g[2] = a[2] & b[2],g[3] = a[3] & b[3];

 // Propagate signals

 assign p[0]=a[0]^b[0],p[1]=a[1]^b[1],p[2]=a[2]^b[2],p[3]=a[3]^b[3];

 // Create the carry terms

 assign c[0]=1'b 0;

 assign c[1]= g[0] |(p[0] &c[0]);

 assign c[2]=g[1] |(p[1] &c[1]);

 assign c[3]=g[2] |(p[2] &c[2]);

 assign c[4]=g[3] |(p[3] &c[3]);

full_adder fa1(a[0],b[0],c[0],sum[0]),

 fa2(a[1],b[1],c[1],sum[1]),

 fa3(a[2],b[2],c[2],sum[2]),

 fa4(a[3],b[3],c[3],sum[3]);

 assign s= {c[4],sum};

endmodule

// Full adder module

module full_adder(

 input a,

 input b,

 input cin,

 output y,

 output co

);

 assign y = a^b^cin, co = a&b|b&cin|cin&a;

endmodule

TEST BENCH PROGRAM:

module test_cla1();

 reg [3:0] a,b;

 wire [4:0] s;

 Carry_look_ahead l1(a,b,s);

 initial

 begin

 a = 4'h 0;

 b= 4'h 0;

 end

 always

3

 begin

 #3 a=a+4'h 1;

 #3 b = b + 4'h 1;

 end

 endmodule

PROCEDURE:

1. Double click on the Vivado2017.2 icon on your desktop to open up the welcome window of the

development tool (as shown below). Three main sections can be observed in this window: “Quick Start”,

“Tasks”, and “Learning Center”.

2. Now, click on “Create Project” to create a new project. You have to be careful about where to save your

project file .

4

3. Click on NEXT and type project name, project location click on NEXT

4. In the next window, choose “RTL Project” as the project type. (click on select button), click on NEXT

5

5. Click on Boards:

i. vendor:em.avnet.com

ii. Display Name: Zed board Evaluation and Development Kit.

iii. Board Rev : Latest

 click on NEXT,FINISH

6. Click on plus symbol(Add source)

6

7. Click on Add or create design source and NEXT .In the opened window, you can create source file

(Verilog/Verilog Header/SystemVeilog) for your new project or add sources from the existing projects.

Click on “Create File”, and in the opened window .

8. Click on Create file and type the file name

The opened window is the main environment for your project that is called “Project Manager”. You can

explore it by seeing the options of each category in the toolbar on top of the window. In the left side,

you can see the “Settings”, “Add Sources”, “”Language Template”, “IP Catalog”, “IP Integrator”,

“Simulation”, “RTL Analysis”, “Synthesis”, “Implementation”, and “Program and Debug”. Each of

7

these serves a part of the digital design flow. In the middle, you can see the windows for “Sources”,

“Properties”, “Project Summary”, and the reports and summaries for the execution of the project files.

9. Type the program

8

10. Click on plus button(Add sources) and select Add or create simulation sources and NEXT

11. Click on the Create file and type the file name

9

12. Type the test bench program and save

10

13. Run simulation -> click on Run behavioral simulation

14. SIMULATION OUTPUT:

11

15.Click on RTL Analysis -> open elaborate designs(click on I/O ports)

16. Assign port packages(assign pin number) and I/O std (select LVCMOS33)

INPUT PIN NUMBERS OUTPUT LED PIN NUMBERS

12

SW0 F22 LD0 T22

SW1 G22 LD1 T21

SW2 H22 LD2 U22

SW3 F21 LD3 U21

SW4 H19 LD4 V22

SW5 H18 LD5 W22

SW6 H17 LD6 U19

SW7 M15 LD7 U14

17. Save and type the XDC File name

18. Run the Implementation and select generate bit stream click OK

13

19.Select the Open Hardware Manager and click on OK

20.Connect the Hardware kit (Ex: ZedBoard) and Click on Open Target -> auto connect

14

21.Click on the Program Device ,verify the .bit file and click OK

15

22.Verify the function table on Zedboard.

16

CONCLUSION: Hence a carry look-ahead adder is designed and implemented on Zed board using Xilinx

Vivado2017.2

PRECAUTIONS:

1. Give connections carefully such as Zed Board ,JTAG Power cable, power supply etc.

2. Switch on the power supply.

3. Handle the Zed Board carefully.

4. Check pin configuration before configuring the Target Device.

VIVA Questions:

1. List the disadvantages of ripple adder.

2. Mention the advantages of carry look ahead adder.

3. Define the Pi,Gi signals in CLA?

4. Why carry look-ahead adder is faster?

5. List out carry expressions in CLA.

17

AIM: To design and simulate 4 X 4 Array Multiplier using Xilinx's VIVADO and its implementation

 on Zed board Evaluation and Development Kit

COMPONENTS & TOOLS REQUIRED:

Target devices: Xilinx Zynq-7000- Zed board Evaluation and Development Kit/Zybo board

Tools: Xilinx VIVADO suite

Preferred language- Verilog

THEORY: The design structure of the array Multiplier is regular, it is based on the add shift algorithm

principle.

Partial product = the multiplicand * multiplier bit

where AND gates are used for the product, the summation is done using Full Adders and Half Adders where the

partial product is shifted according to their bit orders. In an n*n array multiplier, n*n AND gates compute the

partial products and the addition of partial products can be performed by using n* (n – 2) Full adders and n Half

adders. The 4×4 array multiplier shown has 8 inputs and 8 outputs

IMPLEMENTATION OF 4X4 ARRAY MULTIPLIER
EXP NO-2

DATE:

18

VERILOG CODE:

module array_mult_4x4(

 input [3:0] a,

 input [3:0] b,

 output [7:0] p

);

 wire [15:0] pp; wire [9:0] psum;

 and g1(pp[0],a[0],b[0]),

 g2(pp[1],a[1],b[0]),

19

 g3(pp[2],a[2],b[0]),

 g4(pp[3],a[3],b[0]),

 g5(pp[4],a[0],b[1]),

 g6(pp[5],a[1],b[1]),

 g7(pp[6],a[2],b[1]),

 g8(pp[7],a[3],b[1]),

 g9(pp[8],a[0],b[2]),

 g10(pp[9],a[1],b[2]),

 g11(pp[10],a[2],b[2]),

 g12(pp[11],a[3],b[2]),

 g13(pp[12],a[0],b[3]),

 g14(pp[13],a[1],b[3]),

 g15(pp[14],a[2],b[3]),

 g16(pp[15],a[3],b[3]);

 adder_4bit a1({1'b 0,pp[3:1]}, pp[7:4], psum[4:0]),

 a2(psum[4:1],pp[11:8],psum[9:5]),

 a3(psum[9:6],pp[15:12],p[7:3]);

 assign p[2:0] = {psum[5],psum[0],pp[0]};

endmodule

4-BIT PARALLEL ADDER

module adder_4bit(

 input [3:0] x,y,

 output [4:0] s

);

 wire [4:1] c; wire [3:0] sum; supply0 gnd;

 full_adder fa1(x[0],y[0],gnd, sum[0],c[1]),

 fa2(x[1],y[1],c[1],sum[1],c[2]),

 fa3(x[2],y[2],c[2],sum[2],c[3]),

 fa4(x[3],y[3],c[3],sum[3],c[4]);

 assign s = {c[4],sum};

endmodule

full-adder

module full_adder(

 input a,b,cin,

 output s,co

);

 assign s=a^b^cin,co=(a&b)|(b&cin)|(cin&a);

endmodule

TEST BENCH FOR 4X4 ARRAY MULTIPLIER:

module tst_array();

 reg [3:0] a,b;

 wire [7:0] p;

 array_mult_4x4 l1(a,b,p);

 initial

 begin

 a = 4'h 0;

 b= 4'h 0;

 end

 always

20

 begin

 #3 a=a+4'h 1;

 #3 b = b + 4'h 1;

 end

 endmodule

PROCEDURE:

1. Double click on the Vivado2017.2 icon on your desktop to open up the welcome window of the

development tool (as shown below). Three main sections can be observed in this window: “Quick Start”,

“Tasks”, and “Learning Center”.

2. . Now, click on “Create Project” to create a new project. You have to be careful about where to save

your project file .

3. Click on NEXT and type project name, project location click on NEXT

4. In the next window, choose “RTL Project” as the project type. (click on select button), click on NEXT

5. Click on Boards:

i. vendor:em.avnet.com

ii. Display Name: Zed board Evaluation and Development Kit.

iii. Board Rev : Latest, click on NEXT,FINISH

 6. Click on plus symbol(Add source)

 7. Click on Add or create design source and NEXT .In the opened window, you can create source

 file (Verilog/Verilog Header/SystemVeilog) for your new project or add sources from the

 existing projects. Click on “Create File”, and in the opened window .

 8.Click on Create file and type the file name

 The opened window is the main environment for your project that is called “Project

 Manager”. You can explore it by seeing the options of each category in the toolbar on top of

 the window. In the left side, you can see the “Settings”, “Add Sources”, “”Language

 Template”, “IP Catalog”, “IP Integrator”, “Simulation”, “RTL Analysis”, “Synthesis”,

 “Implementation”, and “Program and Debug”. Each of these serves a part of the digital

 design flow. In the middle, you can see the windows for “Sources”, “Properties”, “Project

 Summary”, and the reports and summaries for the execution of the project file

 9. Type the program

 10. Click on plus button(Add sources) and select Add or create simulation sources and

 NEXT

 11. Click on the Create file and type the file name

 12. Type the test bench program and save

 13. Run simulation -> click on Run behavioral simulation

 14.SIMULATION OUTPUT

21

 15. Click on RTL Analysis -> open elaborate designs(click on I/O ports)

 16. Assign port packages(assign pin number) and I/O std (select LVCMOS33)

INPUT PIN

NUMBERS

OUTPUT LED PIN

NUMBERS

SW0 F22 LD0 T22

SW1 G22 LD1 T21

SW2 H22 LD2 U22

SW3 F21 LD3 U21

SW4 H19 LD4 V22

SW5 H18 LD5 W22

SW6 H17 LD6 U19

SW7 M15 LD7 U14

 17. Save and type the XDC File name

 18. Run the Implementation and select generate bit stream click OK

 19.Select the Open Hardware Manager and click on OK

 20. Connect the Hardware kit (Ex: ZedBoard) and Click on Open Target -> auto connect

 21.Click on the Program Device ,verify the .bit file and click OK

 22. Verify the function table on Zedboard

22

CONCLUSION: Hence a 4x4 array multiplier is designed and implemented on Zed board using Xilinx

Vivado2017.2

PRECAUTIONS:

1. Give connections carefully such as Zed Board ,JTAG Power cable, power supply etc.

2. Switch on the power supply.

3. Handle the Zed Board carefully.

4. Check pin configuration before configuring the Target Device.

VIVA –QUESTIONS:

1. What is array multiplier?

2. What is parallel adder?

3. How many adders are required to implement 4x4 array multiplier?

4. What are the disadvantages of array multipliers?

5. Classify multipliers.

23

 AIM: To design and simulate of a 4-Bit Arithmetic & Logic using Xilinx's VIVADO and its implementation

on Zed board Evaluation and Development Kit

 COMPONENTS & TOOLS REQUIRED:

Target devices: Xilinx Zynq-7000- Zed board Evaluation and Development Kit/Zybo board

Tools: Xilinx VIVADO suite

Preferred language- Verilog

THEORY: ALU or Arithmetic Logical Unit is a digital circuit that performs arithmetic operations like

addition, subtraction, division, multiplication and logical oparations like and, or, xor, nand, nor etc.

VERILOG CODE :

module alu(input [3:0] A,B, // ALU 8-bit Inputs

input [3:0] ALU_Sel, // ALU Selection

output [4:0] ALU_Out, // ALU 8-bit Output

output CarryOut); // Carry Out Flag

reg [4:0] ALU_Result;

wire [5:0] tmp;

assign ALU_Out=ALU_Result; // ALU out

assign tmp= {1'b0,A} + {1'b0,B};

assign CarryOut=tmp[5]; // Carryout flag

always @(*)

begin

case(ALU_Sel)

4'b0000: ALU_Result=A+B ; // Addition

 4'b0001: ALU_Result=A-B ; // Subtraction

Implementation of a 4-Bit Arithmetic & Logic

Unit

EXP NO -3

DATE:

24

4'b0010: ALU_Result=A*B; // Multiplication

4'b0011: ALU_Result=A/B; // Division

4'b0100: ALU_Result=A<<1; // Logical shift left

4'b0101: ALU_Result=A>>1; // Logical shift right

4'b0110: ALU_Result= {A[2:0],A[3]}; // Rotate left

 4'b0111: ALU_Result= {A[0],A[3:1]}; // Rotate right

4'b1000: ALU_Result=A&B; // Logical and

4'b1001: ALU_Result=A|B; // Logical or

4'b1010: ALU_Result=A^B; // Logical xor

4'b1011: ALU_Result=~(A|B); // Logical nor

4'b1100: ALU_Result=~(A&B); // Logical nand

4'b1101: ALU_Result=~(A^B); // Logical xnor

4'b1110: ALU_Result= (A>B)?4'd1:4'd0 ; // Greater comparison

4'b1111: ALU_Result= (A==B)?4'd1:4'd0 ; // Equal comparison

default:ALU_Result=A+B ;

endcase

end

endmodule

TEST BENCH FOR 4-BIT ALU:

module tst_alu();

reg [3:0] a,b;

reg [3:0] alu_sel;

wire [4:0] alu_out;

alu call(a,b,alu_sel,alu_out);

initial

begin

 a= 4'h 6; b=4'h 5; alu_sel = 4'h 0;

#320 a= 4'h A; b =4'h9;

end

always

#20 alu_sel = alu_sel + 4'h1;

endmodule

25

PROCEDURE:

1. Double click on the Vivado2017.2 icon on your desktop to open up the welcome window of the

development tool (as shown below). Three main sections can be observed in this window: “Quick Start”,

“Tasks”, and “Learning Center”.

2. . Now, click on “Create Project” to create a new project. You have to be careful about where to save

your project file .

3. Click on NEXT and type project name, project location click on NEXT

4. In the next window, choose “RTL Project” as the project type. (click on select button), click on NEXT

5. Click on Boards:

i. vendor:em.avnet.com

ii. Display Name: Zed board Evaluation and Development Kit.

iii. Board Rev : Latest, click on NEXT,FINISH

 6. Click on plus symbol(Add source)

 7. Click on Add or create design source and NEXT .In the opened window, you can create source

 file (Verilog/Verilog Header/SystemVeilog) for your new project or add sources from the

 existing projects. Click on “Create File”, and in the opened window .

 8.Click on Create file and type the file name

 The opened window is the main environment for your project that is called “Project

 Manager”. You can explore it by seeing the options of each category in the toolbar on top of

 the window. In the left side, you can see the “Settings”, “Add Sources”, “”Language

 Template”, “IP Catalog”, “IP Integrator”, “Simulation”, “RTL Analysis”, “Synthesis”,

 “Implementation”, and “Program and Debug”. Each of these serves a part of the digital

 design flow. In the middle, you can see the windows for “Sources”, “Properties”, “Project

 Summary”, and the reports and summaries for the execution of the project file

 9. Type the program

 10. Click on plus button(Add sources) and select Add or create simulation sources and

 NEXT

 11. Click on the Create file and type the file name

 12. Type the test bench program and save

 13. Run simulation -> click on Run behavioral simulation

 14.SIMULATION OUTPUT

26

 15. Click on RTL Analysis -> open elaborate designs(click on I/O ports)

 16. Assign port packages(assign pin number) and I/O std (select LVCMOS33)

INPUT PIN

NUMBERS

OUTPUT LED PIN

NUMBERS

SW0 F22 LD0 T22

SW1 G22 LD1 T21

SW2 H22 LD2 U22

SW3 F21 LD3 U21

SW4 H19 LD4 V22

SW5 H18 LD5 W22

SW6 H17 LD6 U19

SW7 M15 LD7 U14

S0 T18

S1 N15

S2 P16

S3 R18

 17. Save and type the XDC File name

 18. Run the Implementation and select generate bit stream click OK

 19.Select the Open Hardware Manager and click on OK

 20. Connect the Hardware kit (Ex: ZedBoard) and Click on Open Target -> auto connect

 21.Click on the Program Device ,verify the .bit file and click OK

 22. Verify the function table on Zedboard

CONCLUSION: Hence a 4-bit ALU is designed and implemented on Zed board using Xilinx Vivado2017.2

PRECAUTIONS:

1. Give connections carefully such as Zed Board ,JTAG Power cable, power supply etc.

2. Switch on the power supply.

3. Handle the Zed Board carefully.

4. Check pin configuration before configuring the Target Device.

VIVA –QUESTIONS:

1. What does ALU means?

2. What operations does ALU perform?

3. Mention the role of control unit and ALU in computer system?

4. What is the difference between ALU and control unit?

5. What is the use of multiplexer in ALU design?

27

AIM: To design and simulate Zero /one Detector using Xilinx's VIVADO and its implemention on Zed

 Board Evaluation and Development Kit

 COMPONENTS & TOOLS REQUIRED:

 Target devices: Xilinx Zynq-7000- Zed board Evaluation and Development Kit/Zybo board

Tools: Xilinx VIVADO suite

Preferred language- Verilog

THEORY: Detecting all ones or all zeros on wide N-bit words requires large fan-in AND or NOR gates.

VERILOG CODE :

module zeroone (o1,o2,a,b,c,d);

input a,b,c,d;

output o1,o2;

wire w,x,y,z;

and g1(w,a,b),g2(x,c,d),g3(o1,w,x);

nor g4(y,a,b),g5(z,c,d);

and g6(o2,y,z);

endmodule

TEST BENCH

module tb();

reg a,b,c,d;

wire o1,o2;

zeroone tb(o1,o2,a,b,c,d);

initial

begin

a=0;b=0;c=0;d=0;

#2 a=1;b=1;c=0;d=1;

#2 a=1;b=1;c=1;d=1;

Implementation of Zero /one Detector

EXP NO-4

DATE:

28

end

initial #10 $stop;

initial $monitor($time,"o1=%b,o2=%b,a=%b,b=%b,c=%b,d=%b",o1,o2,a,b,c,d);

endmodule

PROCEDURE:

1. Double click on the Vivado2017.2 icon on your desktop to open up the welcome window of the

development tool (as shown below). Three main sections can be observed in this window: “Quick Start”,

“Tasks”, and “Learning Center”.

2. . Now, click on “Create Project” to create a new project. You have to be careful about where to save your

project file .

3. Click on NEXT and type project name, project location click on NEXT

4. In the next window, choose “RTL Project” as the project type. (click on select button), click on NEXT

5. Click on Boards:

i. vendor:em.avnet.com

ii. Display Name: Zed board Evaluation and Development Kit.

iii. Board Rev : Latest, click on NEXT,FINISH

 6. Click on plus symbol(Add source)

 7. Click on Add or create design source and NEXT .In the opened window, you can create source

 file (Verilog/Verilog Header/SystemVeilog) for your new project or add sources from the

 existing projects. Click on “Create File”, and in the opened window .

 8.Click on Create file and type the file name

 The opened window is the main environment for your project that is called “Project

 Manager”. You can explore it by seeing the options of each category in the toolbar on top of

 the window. In the left side, you can see the “Settings”, “Add Sources”, “”Language

 Template”, “IP Catalog”, “IP Integrator”, “Simulation”, “RTL Analysis”, “Synthesis”,

 “Implementation”, and “Program and Debug”. Each of these serves a part of the digital

 design flow. In the middle, you can see the windows for “Sources”, “Properties”, “Project

 Summary”, and the reports and summaries for the execution of the project file

 9. Type the program

 10. Click on plus button(Add sources) and select Add or create simulation sources and

 NEXT

 11. Click on the Create file and type the file name

 12. Type the test bench program and save

 13. Run simulation -> click on Run behavioral simulation

29

14. SIMULATION OUTPUT

15. Click on RTL Analysis -> open elaborate designs(click on I/O ports)

16. Assign port packages(assign pin number) and I/O std (select LVCMOS33)

INPUT PIN

NUMBERS

OUTPUT LED PIN

NUMBERS

SW0 F22 LD0 T22

SW1 G22 LD1 T21

SW2 H22 LD2 U22

SW3 F21 LD3 U21

SW4 H19 LD4 V22

SW5 H18 LD5 W22

SW6 H17 LD6 U19

SW7 M15 LD7 U14

 17. Save and type the XDC File name

 18. Run the Implementation and select generate bit stream click OK

 19.Select the Open Hardware Manager and click on OK

 20. Connect the Hardware kit (Ex: ZedBoard) and Click on Open Target -> auto connect

 21.Click on the Program Device ,verify the .bit file and click OK

 22. Verify the function table on Zedboard

30

CONCLUSION: Hence a zero /one detector is designed and implemented on Zed board using Xilinx

Vivado2017.2

PRECAUTIONS:

1. Give connections carefully such as Zed Board , JTAG Power cable, power supply etc.

2. Switch on the power supply.

3. Handle the Zed Board carefully.

4. Check pin configuration before configuring the Target Device.

VIVA –QUESTIONS:

1. What does zero/one means?

2. What are the applications of zero/one detector?

3. Develop a sequence detector?

31

AIM: To design and simulate SR, D, JK, T Flip- Flops using Xilinx's VIVADO and its implementation on

Zed Board Evaluation and Development Kit

 COMPONENTS & TOOLS REQUIRED:

Target devices: Xilinx Zynq-7000- Zed board Evaluation and Development Kit/Zybo board

Tools: Xilinx VIVADO suite

Preferred language- Verilog

THEORY : A flip flop is an electronic circuit with two stable states that can be used to store binary data. It is

the basic storage element in sequential logic. There are majorly 4 types of flip-flops, with the most common one

being SR flip-flop. This simple flip-flop circuit has a set input (S) and a reset input (R). In this system, when

Set “S” as active, the output “Q” would be high and “Q‘” will be low when reset the input. Due to the undefined

state in the SR flip-flop, another flip-flop is required in electronics. The JK flip-flop is an improvement on the

SR flip-flop where the undefined state which occurs when S=R=1 is eliminated.. The JK Flip Flop when

J=K=1,the output is complement of previous state.In D flip-flop the output (Q) is same as the input. A T flip-

flop is like a JK flip-flop. This is basically a single input version of JK flip-flops. This modified form of JK

flip-flop is obtained by connecting both inputs J and K together. It has only one input along with the clock

input.Because of its ability to complement its state (i.e.) Toggle, hence the name Toggle flip-flop.

LOGIC SYMBOLS OF FLIP-FLOPS

TRUTH TABLE:

S-R Flip Flop D-Flip Flop J-K Flip Flop T- Flip Flop

Implementation of Flip Flops: SR, JK,T,D

EXP NO-5

DATE:

32

VERILOG CODE:

SR FLIPFLOP:

module srff(

 input s,r,

 input clk,

 output reg q,nq

);

 initial

 begin

 q=1'b0;

 nq=1'b1;

 end

 always @(posedge clk)

 begin

 case({s,r})

 {1'b0,1'b0}: begin q=q; nq=nq; end

 {1'b0,1'b1}: begin q=1'b0; nq=1'b1; end

 {1'b1,1'b0}: begin q=1'b1; nq=1'b0; end

 {1'b1,1'b1}: begin q=1'bx; q=1'bx; end

 endcase

 end

endmodule

TEST BENCH PROGRAM

module sr_ff_test;

reg s,r,clk;

wire q,nq;

sr_ff sr_ff_test(s,r,clk,q,nq);

initial

begin

forever

begin

clk=1;

#50 clk=0;

#50 clk=1;

end

end

initial

begin

 s=0;r=1;

#100 s=0;r=0; #100 s=1;r=0; #100 s=1;r=1;

end

initial

begin

$monitor($time,"s=%b,r=%b,clk=%b,q=%b,nq=%b",s,r,clk,q,nq);

end

endmodule

33

JK FLIPFLOP WITH CLOCK DIVISION:

module jk_ff(q,nq,j,k,clk);

output reg q,nq;

input j,k,clk;

reg clkd; reg [30:0] div;

always @ (posedge clk)

begin

div <= div+1'b1;

clkd <= div[26];

end

initial begin q=1'b0; nq=1'b1; end

always @ (posedge clkd)

 begin

 case({j,k})

 {1'b0,1'b0}:begin q=q; nq = nq; end

 {1'b0,1'b1}: begin q=1'b0; nq =1'b1; end

 {1'b1,1'b0}:begin q=1'b1; nq =1'b0; end

 {1'b1,1'b1}: begin q=~q; nq =~ nq; end

 endcase

 end

endmodule

TEST BENCH PROGRAM:

module tb_jk ();

 reg j,k,clk;

wire q,nq;

initial begin

 clk=0;

end;

 always #5 clk = ~clk;

 jk_ff swt (q,nq,j,k,clk);

 initial

 begin

 j <= 0;

 k <= 0;

 #5 j <= 0;

 k <= 1;

 #15 j <= 1;

 k <= 0;

 #25 j <= 0;

 k <= 0;

 #35 j <= 1;

 k <= 1;

 end;

 endmodule

T- FLIPFLOP:

module tff (q, clk,reset, t);

34

input clk,reset,t;

output reg q;

 always @ (posedge clk) begin

 if (reset)

 q <= 0;

 else

 if (t)

 q <= ~q;

 else

 q <= q;

 end

endmodule

TEST BENCH PROGRAM:

module tb_tff();

reg t;

reg clk;

reg reset;

wire q;

tff dut(q, clk,reset, t);

initial begin

 clk=0;

 forever #10 clk = ~clk;

end

initial begin

 reset=1;

 #100;

 reset=0;

 t <= 1;

 #100;

 t <= 0;

 #100;

 t <= 1;

end

endmodule

T- FLIPFLOP:

module tff (q, clk,reset, t);

input clk,reset,t;

output reg q;

always @ (posedge clk) begin

if (reset)

q <= 0;

else

if (t)

q <= ~q;

else

35

q <= q;

end

endmodule

TEST BENCH PROGRAM:

module tb_tff();

reg t;

reg clk;

reg reset;

wire q;

tff dut(q, clk,reset, t);

initial begin

clk=0;

forever #10 clk = ~clk;

end

initial begin

reset=1;

#100;

reset=0;

t <= 1;

#100;

t <= 0;

#100;

t <= 1;

end

endmodule

D- FLIPFLOP:

module D_ff(

 input d,clk,async_reset,

 output reg q

);

 always @(posedge clk or posedge async_reset)

 begin

 if(async_reset==1'b1)

 q <= 1'b0;

 else

 q <= d;

 end

endmodule

TEST BENCH PROGRAM:

module tb_DFF();

reg D; reg clk; reg reset;

wire Q;

D_ff dut(D,clk,reset,Q);

initial begin

 clk=0;

 forever #10 clk = ~clk;

36

end

initial begin

 reset=1;

 D <= 0;

 #100; reset=0; D <= 1;

 #100; D <= 0;

 #100; D <= 1;

end

endmodule

37

PROCEDURE:

1. Double click on the Vivado2017.2 icon on your desktop to open up the welcome window of the

development tool (as shown below). Three main sections can be observed in this window: “Quick Start”,

“Tasks”, and “Learning Center”.

2. . Now, click on “Create Project” to create a new project. You have to be careful about where to save

your project file .

3. Click on NEXT and type project name, project location click on NEXT

4. In the next window, choose “RTL Project” as the project type. (click on select button), click on NEXT

5. Click on Boards:

i. vendor:em.avnet.com

ii. Display Name: Zed board Evaluation and Development Kit.

iii. Board Rev : Latest, click on NEXT,FINISH

 6. Click on plus symbol(Add source)

 7. Click on Add or create design source and NEXT .In the opened window, you can create source

 file (Verilog/Verilog Header/SystemVeilog) for your new project or add sources from the

 existing projects. Click on “Create File”, and in the opened window .

 8.Click on Create file and type the file name

 The opened window is the main environment for your project that is called “Project

 Manager”. You can explore it by seeing the options of each category in the toolbar on top of

 the window. In the left side, you can see the “Settings”, “Add Sources”, “”Language

 Template”, “IP Catalog”, “IP Integrator”, “Simulation”, “RTL Analysis”, “Synthesis”,

 “Implementation”, and “Program and Debug”. Each of these serves a part of the digital

 design flow. In the middle, you can see the windows for “Sources”, “Properties”, “Project

 Summary”, and the reports and summaries for the execution of the project file

 9. Type the program

 10. Click on plus button(Add sources) and select Add or create simulation sources and

 NEXT

 11. Click on the Create file and type the file name

 12. Type the test bench program and save

 13. Run simulation -> click on Run behavioral simulation

 14.SIMULATION OUTPUT

SR-FLIP FLOP:

38

D-FLIP FLOP:

 JK-FLIP FLOP:

T-FLIP FLOP:

15. Click on RTL Analysis -> open elaborate designs(click on I/O ports)

16. Assign port packages(assign pin number) and I/O std (select LVCMOS33)

INPUT PIN

NUMBERS

OUTPUT LED PIN

NUMBERS

SW0 F22 LD0 T22

SW1 G22 LD1 T21

SW2 H22 LD2 U22

SW3 F21 LD3 U21

SW4 H19 LD4 V22

SW5 H18 LD5 W22

SW6 H17 LD6 U19

SW7 M15 LD7 U14

39

 17. Save and type the XDC File name

 18. Run the Implementation and select generate bit stream click OK

 19.Select the Open Hardware Manager and click on OK

 20. Connect the Hardware kit (Ex: ZedBoard) and Click on Open Target -> auto connect

 21.Click on the Program Device ,verify the .bit file and click OK

 22. Verify the function table on Zedboard

CONCLUSION: Hence all the flip-flops are designed and implemented on Zed board using Xilinx

Vivado2017.2

PRECAUTIONS:

1. Give connections carefully such as Zed Board , JTAG Power cable, power supply etc.

2. Switch on the power supply.

3. Handle the Zed Board carefully.

4. Check pin configuration before configuring the Target Device.

VIVA-QUESTIONS:

1. In a J-K flip-flop, if J=K the resulting flip-flop is?

2. The characteristic equation of J-K flip-flop is?

3. What does the direct line on the clock input of a J-K flip-flop mean?

4. List the differences between latch and flipflop

5. Define Sequential and Combinational circuts.

6. Define level triggering and edge triggering.

Ful custom IC design flow in Cadence:

Design Entry

Go to cds_work folder-> create folder->RightClick->open in Terminal->virtuoso

Opens cds.log

Go to tools ->Library manager

File->New->Library->library_name->Attach to an existing library->gpdk90

Select libraryname->File->New->cellview->cellename->opens virtuoso schematic editor

Enter the design:

I->Instance

P->Pin

W->Wire

F->Fit

Q->Properties

R->Rotate

 To bring pmos and nmos instances

Press I->Browse for gpdk90 library->select either pmos1v or nmos1v->enter->edit

->width value->OK->place component in proper position

 To move objects

Select schematic object->Click and drag to move objects

 For properties of objects

Select schematic object->press key Q keyboard for properties of objects

To zoom in and zoom out

Ctrl+Mouse scroll up and scroll down[keys [->zoomout and]->zoomin]

To bring pins

Press key P->Give pin name->select direction->input [or output]->OK->place pin in

proper position

To provide wiring

Press key W->click at the point from which wiring to be started ,to be turned and click

at the point at which wiring to be ended

[use key ESC ->to come out of wiring]

[use undo and redo options]

[select wiring and press key delete to delete wiring]

Check and save

Create Symbol

Go to create->cell view ->From cell view->Proper alignment for pins

Close symbol and schematic

Pre-Layout simulation:

Select libraryname in library manager->File->New->cellview->cellename for testbench

->opens virtuoso schematic editor

 Enter the testbench setup:

I->Instance

P->Pin

W->Wire

F->Fit

Q->Properties

To bring DC power supply and vpulse

Press I->Browse for analogLib library->select DC powersupply ->give dc voltage

value[1.8] ->place dc power supply in proper position

[Press I->Browse for analogLib library->select vpulse->

 Voltage1 value[0]

Voltage2 value[1.8]

Period->[40n]

Delay->[1p]

Rise time->[1p]

Fall time->[1p][delay,rise and fall time as minimum as possible]

Pulse width[20n][for 50% duty cycle]

With above values place vpulse in proper position]

Check and save

Go to Launch->ADE L->Opens ADE L window

[Go to Variables->Edit->Variable name and value->Add->ok]

Go to Analyses->Choose->tran

 Stop time

 Accuracy

[Analyses->dc->select dc operating point

Design variable->select design variable

Sweep range-> start and stop values]

Go to outputs->to be ploted->select on schematic->select input and output wires in

schematic

Run simulation in ADE L->observe waveforms

[measure required parameters]

Layout design

Open schematic of design

Go to launch->Layout XL->ok->ok-> opens virtuoso layout editor

In virtuoso layout editor

Go to Connectivity->generate->All from the source->opens dialog box->Give

separation(0.12)->Tick in boundary->ok->layout objects appear in PR boundary

 To move objects

Select layout object->Click and drag to move objects

 For properties of objects

Select layout objects->press key Q keyboard for properties of objects

To Extend edge of PR boundary(stretch)

Press S key in keyboard->Select any edge of PR boundary->Move curser and click

To zoom in and zoom out

Mouse scroll up and scroll down[ctrl+Z and shift +Z]

To get ruler->Short cut key->K

To remove ruler->short cut->shift+K

To select all->ctrl+A

To deselect ->ctrl+D

 To get substrate taps for transistor

Select on transistor->RC->parameter->Bodytietype->change as integrated

(for inverter)[select either left or right tap]

 [Detached (for NAND and NOR)[select top tap for pmos and bottom tap for

nmos]]

[We can also draw taps as customized]

 To draw routing

 Select layer in layer pallette

Press P [or ctrl+shift+W][path] and click at start point,release the mouse,move

in required direction and press Enter at end point

[use key ESC ->to come out of routing]

[use undo and redo options]

[select layer[path or route] and press key delete to delete wiring]

 To align layers

Select layer->press key A->select one edge of the layer to be moved and click at

the point[edge] to which the layer to be moved

[Complete the layout with above information]

Verification of layout

Go to assura tab in layout editor->Technology->Browse and select path as

[home/buet/cadence/gpdk90 v4.6/assura_tech.lib]->ok

DRC

Go to assura->runDRC->Give runname ->select Technology

LVS

Go to assura->runLVS->Give runname ->select Technology

PEX or RCX

Go to assura->runRCX->opens dialog box

 Setup tab->outpt->select as extractedview

 Extraction tab->Extraction Type->RC

 Refnode->VSS![or GND!]

Filtering tab->Enter power nets->VDD! [Enter] VSS![or GND!]

 Enter ground nets->GND!->OK

Post-Layout simulation

Select testbench cell in library manager

Go to File->New->cellview->change type as config->OK->opens new configuration-

>change view as schematic->use template->change name as spectre->ok and ok

Go to tree view->unplus I0->Right click->set instance view-> av_exctracted

view

Click open-opens testbench cell view

Go to session in testbench schematic cell view->load state->run simulation->observe

post-layout simulation waveforms

[measure required parameters]

 [Refer instructions given by demonstrator]

GDSII generation

Select CDS.log window

Go to File->Export->stream->opens dialog box

Give stream file name-> stremfilename.gds[select proper location]

Add Technology library

Browse for Library->cell->view->ok

Click Translate

[Stream file will be located in respective location]

[find stream file]

[open in terminal]

[vim stremfilename.gds]-> this linux command opens stream file

1. Design of NMOS Inverter

AIM: To design, simulate and verify the operation of NMOS inverter using Cadence tools at

different VDDs, Widths of NMOS transistor by ensuring minimum Lengths and widths for

its Power and Delay analysis.

Tools used:

1. Virtuoso Tool for Schematic Designs

2. Spectre Tool for Simulation

Circuit:

Procedure: Refer Annexure I

Testbench:

Simulation Results:

Transient and DC analysis

Result:

The design, simulation and verification of CMOS inverter using Cadence tools at different

VDD, Widths of NMOS and PMOS transistors for its Power and Delay analysis was performed.

1) VDD:________, Width of NMOS :___________: Width of

Power:__________:Delay:_____________

2) VDD:________, Width of NMOS :___________: Width of

Power:__________:Delay:_____________

3) VDD:________, Width of NMOS :___________: Width of

Power:__________:Delay:_____________

2. Design of CMOS Inverter

AIM: To design, simulate and verify the operation of CMOS inverter using Cadence tools at

different VDDs, Widths of NMOS and PMOS transistors by ensuring minimum Lengths

and widths for its Power and Delay analysis.

Tools used:

3. Virtuoso Tool for Schematic Designs

4. Spectre Tool for Simulation

Circuit:

Procedure: Refer Annexure I

Testbench:

Simulation Results:

Transient and DC analysis

Result:

The design, simulation and verification of CMOS inverter using Cadence tools at different

VDD, Widths of NMOS and PMOS transistors for its Power and Delay analysis was performed.

1) VDD:________, Width of NMOS :___________: Width of

PMOS:___________:Power:__________:Delay:_____________

2) VDD:________, Width of NMOS :___________: Width of

PMOS:___________:Power:__________:Delay:_____________

3) VDD:________, Width of NMOS :___________: Width of

PMOS:___________:Power:__________:Delay:_____________

3. Design of 2-input CMOS NOR gate

AIM: To design, simulate and verify the operation of CMOS NOR using Cadence tools at different

VDDs, Widths of NMOS and PMOS transistors by ensuring minimum Lengths and widths

for its Power and Delay analysis.

Tools used:

1. Virtuoso Tool for Schematic Designs

2. Spectre Tool for Simulation

Circuit:

Testbench:

SimulationResults:

Result:
The design, simulation and verification of CMOS NOR Gate using Cadence tools at

different VDD, Widths of NMOS and PMOS transistors for its Power and Delay analysis was

performed.

1) VDD:________, Width of NMOS :___________: Width of

PMOS:___________:Power:__________:Delay:_____________

2) VDD:________, Width of NMOS :___________: Width of

PMOS:___________:Power:__________:Delay:_____________

3) VDD:________, Width of NMOS :___________: Width of

PMOS:___________:Power:__________:Delay:_____________

4.Design of 2-input NAND Gate Design

AIM: To design, simulate and verify the operation of CMOS NAND using Cadence tools at

different VDDs, Widths of NMOS and PMOS transistors by ensuring minimum Lengths

and widths for its Power and Delay analysis.

Tools used:

1. Virtuoso Tool for Schematic Designs

2. Spectre Tool for Simulation

Circuit:

Testbench:

Simulation Results:

Transient and DC analysis

Result:

The design, simulation and verification of CMOS NAND Gate using Cadence tools at

different VDD, Widths of NMOS and PMOS transistors for its Power and Delay analysis was

performed.

1) VDD:________, Width of NMOS :___________: Width of

PMOS:___________:Power:__________:Delay:_____________

2) VDD:________, Width of NMOS :___________: Width of

PMOS:___________:Power:__________:Delay:_____________

3) VDD:________, Width of NMOS :___________: Width of

PMOS:___________:Power:__________:Delay:_____________

.

5.Design D- Flip Flop

AIM: To design, simulate and verify the operation of CMOS D-Flip flop using Cadence tools at

different VDDs, Widths of NMOS and PMOS transistors by ensuring minimum Lengths

and widths for its Power and Delay analysis.

Tools used:

1. Virtuoso Tool for Schematic Designs

2. Spectre Tool for Simulation

Circuit:

Testbench:

Simulation Results:

Transient analysis

Result:

The design, simulation and verification of CMOS D-Flip flop using Cadence tools at

different VDD, Widths of NMOS and PMOS transistors for its Power and Delay analysis was

performed.

1) VDD:________, Width of NMOS :___________: Width of

PMOS:___________:Power:__________:Delay:_____________

2) VDD:________, Width of NMOS :___________: Width of

PMOS:___________:Power:__________:Delay:_____________

Tools used for ASIC Flow:

1. INCISIVE - Used for Functional Simulation

2. GENUS - Used for Synthesis and pre-Layout Timing Analysis

3. INNOVUS - Used for Physical Design

Getting Started :

1. Make sure the Licensing Server is switched ON and the client is connected to

server.”

2. Open the “counter” directory and make a right click to “Open in Terminal”.

3. To open the tools to be used, type in the command “csh” (Press Enter) followed

by “source /home/install/cshrc” <Or the path of tools whichever is

applicable>.

4. A welcome string “Welcome to Cadence Tool Suite” appears indicating
terminal ready to invoke Cadence Tools available for you.

Module 1: Creating an RTL Code

In order to create an RTL Code, you can open a text editor and type in your

Verilog code or VHDL Code.

1. In the terminal, type in “gedit <filename>.v [OR] <filename>.vhdl”. The file

extensions depends on the type of RTL Code you write as shown.

2. Similarly, using same command, Test Bench also could be written as shown

below.

RTL Code for a 16-bit Synchronous Up-Down Counter

Test Bench for the Up-Down Counter

Module 2: Functional Simulation

1. To perform Functional Simulation, “Incisive” tool is to be used.

2. In your terminal, type the command “nclaunch -new” to open the tool.

3. Select “Multiple Step”. And then select “Create cds.lib”

Note : The ‘-new’ switch is used only for the first time the design is being run.

For the next time on wards, the command to be used could be ‘nclaunch’ only.

4. Save the cds.lib file. It is a tool file that holds the design location information

for easy access by the tool.

5. Based on the Libraries available and the type of RTL Code written, one of the

three shown above is to be selected. Cadence tool suite provides default gpdk
libraries. Here, counter RTL is of Verilog Format and hence third option is

selected.

6. A new pop-up “nclaunch” opens which will contain all the .v and .vhdl files as
per the cds.lib file created.

7. Functional Simulation using Cadence runs in 3 stages:

➔ Compilation of Verilog/VHDL Code and/or Test Bench

➔ Elaboration of the Code & Test Bench Compiled

➔ Simulating the Test Bench or Top Module[in absence of Test Bench]

8. A set of tools are shown in the nclaunch window which refer to VHDL Compiler,

Verilog Compiler, Elaborator, Simulator corresponding from Left To Right.

9. Select the .v or .vhdl files to be compiled and launch Compiler. On successful

completion of compilation, on the Right hand Side, the modules appear under
“Worklib” .

10. Select the Module under Worklib and “Launch Elaborator” . On successful

completion of Elaboration, “Snapshots” are generated.

11. Select the Test Bench under snapshots and “Launch Simulator” .

12.The above steps are depicted under following snapshosts.

The Design Browser pops-up and The Test Bench Module name can be seen on

the left and the Pin list on the right when selected. For Simulation, The number

of Pins / Ports to be simulated can be selected.

Make a right click on the selected and Select “Send to Waveform Window”.

In the waveform window, we can see different ports in the design. Now click
on the Run simulation key to start the simulation. Use the ‘pause’ key to
interrupt or stop the simulation. Use different options like zoom in, zoom out
etc to analyze the plot.

Module 3: Synthesis

Inputs for Synthesis :

1. RTL Code (.v or .vhdl)

2. Chip Level SDC (System Design Constraints)

3. Liberty Files (.lib)

Expected Outputs of Synthesis :

1. Gate Level Netlist

2. Block Level Netlist

3. Timing, Area, Power reports

Synthesis is a 3-stage process which converts Virtual RTL Logic into Physical
Gates in order to give a Physical Shape to the design through Physical Design.

Synthesis runs in following stages :

* Translation - RTL Codes are compiled

* Elaboration / Mapping - Pieces of Logic are replaced with corresponding

Gates from Libraries with same Functionality

* Optimization - Tool tries to reduce cell count without affecting the

functionality

To run the synthesis, the following script can be used.

Chip Level SDC is as follows :

Close out all INCISIVE windows and in the same terminal type in the following

command to run Synthesis.

genus -f rc_script.tcl

The tcl [Tool Command Language] script runs executing each command one
after the other.

A window of Genus GUI pops – up with the top hier cell on the left top. Make a

right click and select Schematic Viewer → In Main.

The Gate level Circuit that implements the RTL Logic can be seen and analysed.

As from the script, Block Level SDC, Gate Level Netlist, Timing, Power and Area

reports are generated which are readable.

The Timing report gives the path with Worst timing.

The area report gives Cell count and Total area occupied by them.

The total power consumed by those cells are given in Power report.

Module 4 : Physical Design

Mandatory Inputs for PD :

1. Gate Level Netlist [Output of Synthesis]

2. Block Level SDC [Output of Synthesis]

3. Liberty Files (.lib)

4. LEF Files (Layer Exchange Format)

Expected Outputs from PD :

1. GDS II File (Graphical Data Stream for Information Interchange – Feed In for
Fabrication Unit).

Close out all windows relating to Genus and in the terminal, type the command

innovus (Press Enter)

For Innovus tool, a GUI opens and also the terminal enters into innovus

command prompt where in the tool commands can be entered.

Physical Design involves 5 stages as following :

After Importing Design,

* Floor Planning
* Power Planning

* Placement

* CTS (Clock Tree Synthesis)

* Routing

Module 4.1 : Importing Design

To Import Design, all the Mandatory Inputs are to be loaded and this can be

done using script files named with .globals and .view/.tcl

Globals File to import design using Mandatory Inputs

The Globals file reads in the LEF’s and Gate Level Netlist and .view file
implicitly.

The .view file reads Liberty Files and Block Level SDC to create various PVT

Corners for analysis.

In the terminal command prompt, type the commands as shown. The design is

imported and “Core Area” is calculated by tool and shown on GUI.

The Horizontal Lines on the GUI across the Core Area are alternative VDD and

VSS tracks and Standard Cell Placement Rows.

Module 4.2 : Floorplan

Steps under Floorplan :

1. Aspect Ratio [Ratio of Vertical Height to Horizontal Width of Core]

2. Core Utilisation [The total Core Area % to be used for Floor Planning]

3. Channel Spacing between Core Boundary to IO Boundary

Select Floorplan → Specify Floorplan to modify/add concerned values to the
above Factors.

On adding/modifying the concerned values, the core area is also modified.

The Yellow patch on the Left Bottom are the group of “Unassigned pins” which

are to be placed along the IO Boundary along with the Standard Cells [Gates].

Module 4.3 : Power Planning

Steps under Power Planning :

1. Connect Global Net Connects

2. Adding Power Rings

3. Adding Power Strings

4. Special Route

During the stage of Importing Design, under the Globals file, Two command

lines state the names of Power and Ground Nets.

However, in order to Current flow through these Power nets, they are to

converge at a point, preferably a common net connected to a Pin.

Under Connect Global Net Connects, we create two pins, one for VDD and one
for VSS connecting them to corresponding Global Nets as mentioned in Globals

file.

Select Power → Connect Global Nets.. to create “Pin” and “Connect to Global

Net” as shown and use “Add to list”.

Click on “Apply” to direct the tool in enforcing the Pins and Net connects to

Design and then Close the window.

In order to Tap in Power from a distant Power supply, Wider Nets and Parallel

connections improve efficiency. Moreover, the cells that would be placed

inside the core area are expected to have shorter Nets for lower resistance.

Hence Power Rings [Around Core Boundary] and Power Stripes [Across Core

Boundary] are added which satisfies the above conditions.

Select Power → Power Planning → Add Rings to add Power rings ‘around Core

Boundary’.

* Select the Nets from Browse option OR Directly type in the Global Net

Names separated by a space being Case and Spelling Senstive.

* Select the Highest Metals marked ‘H’ [Horizontal] for Top and Bottom and

Metals marked ‘V’ [Vertical] for Right and Bottom. This is because Highest
metals have Highest Widths and thus Lowest Resistance.

* Click on Update after the selection and “Set Offset : Center in Channel” in

order to get the Minimum Width and Minimum Spacing of the corresponding
Metals and then Click “OK”.

* Similarly, Power Stripes are added using similar content to that of Power

Rings.

Factors to be considered under Power Stripes :

* Nets

* Metal and It’s Direction

* Width and Spacing [Updated]

* Set to Set Distance = (Minimum Width of Metal + Min. Spacing) x 2

On adding Power Stripes, The Power mesh setup is complete as shown.
However, There are no Vias that could connect Metal 9 or Metal 8 directly with

Metal 1 [VDD or VSS of Standard Cells are generally made up of Metal 1].

The connection between the Highest and Lowest Metals is done through
Stacking of Vias done using “Special Route”.

To perform Special Route, Select Route → Special Route → Add Nets → OK.

After the Special Route is complete, all the Standard Cell Rows turn to the
Color coded for Metal 1 as shown below.

The complete Power Planning process makes sure Every Standard Cell receives

enough power to operate smoothly.

Module 4.4.1 : Pre - Placement

* After Power Planning, a few Physical Cells are added namely, End Caps and

Well Taps.

* End Caps : They are Physical Cells which are added to the Left and Right

Core Boundaries acting as blockages to avoid Standard Cells from moving out
of boundary.

* Well Taps : They act like Shunt Resistance to avoid Latch Up effects.

1. To add End Caps, Select Place → Physical Cell → Add End Caps and “Select” the

FILL’s from the available list. Higher Fills have Higher Widths. As shown Below,
The End Caps are added below your Power Mesh.

2. To add Well Taps, Select Place → Physical Cell → Add Well Tap → Select →

FillX [X → Strength of Fill = 1,2,4 etc] → Distance Interval [Could be given

in range of 30-45u] → OK

Module 4.5 : Placement

1. The Placement stage deals with Placing of Standard Cells as well as Pins.

2. Select Place → Place Standard Cell → Run Full Placement → Mode → Enable

‘Place I/O Pins’ → OK → OK .

All the Standard Cells and Pins are placed as per the communication between

them, i.e., Two communicating Cells are placed as close as possible so that
shorter Net lengths can be used for connections as Shorter Net Lengths enable

Better Timing Results.

Placed Design

Standard Cells Placed

You can toggle the Layer Visibility from the list on the Right.

Report Generation and Optimization :

➔ Timing Report :

To generate Timing Report, Timing → Report Timing → Design Stage – PreCTS

➔ Analysis Type – Setup → OK

The Timing report Summary can be seen on the Terminal.

➔ Area Report :

To generate Area Report, Switch to the Terminal and type the command ,

report_area to see the Cell Count and Area Occupied.

➔ Power report :

To generate Power Report, In the Terminal type the command

report_power to see the Power Consumption numbers.

Design Optimization :

To optimize the Design, Select ECO → Optimize Design → Design Stage

[PreCTS] → Optimization Type – Setup → OK

This step Optimizes your design in terms of Timing, Area and Power.

You can Generate Timing, Area, Power in similar way as above report Post –

Optimization to compare the Reports.

Module 4.6 : Clock Tree Synthesis

The CTS Stage is meant to build a Clock Distribution Network such that every

Register (Flip Flop) acquires Clock at the same time (Atleast Approximately) to

keep them in proper communication.

A Script can be used to Build the Clock Tree as follows :

Source the Script as shown in the above snapshot through the Terminal and

then Select Clock → CCOpt Clock Tree Debugger → OK to build and view clock

tree.

The Red Boxes are the Clock Pins of various Flip Flops in the Design while

Yellow Pentagon on the top represents Clock Source.

The Clock Tree is built with Clock Buffers and Clock Inverters added to boost up

the Clock Signal.

Report Generation and Design Optimization :

CTS Stage adds real clock into the Design and hence “Hold” Analysis also

becomes prominent. Hence, Optimizations can be done for both Setup &
Hold, Timing Reports are to be Generated for Setup and Hold Individually.

Setup Timing Analysis :

Hold Timing Analysis :

For Area and Power Report Generation,

report_area & report_power commands can be used.

Design Optimizations :

Module 4.7 : Routing

* All the net connections shown in the GUI till CTS are only based on the

Logical connectivity.

* These connections are to be replaced with real Metals avoiding Opens,

Shorts, Signal Integrity [Cross Talks], Antenna Violations etc.

To run Routing, Select Route → Nano Route → Route and enable Timing
Driven and SI Driven for Design Physical Efficiency and Reliability.

Report Generation and Design Optimization :

Setup Report :

Hold Report :

Area and Power Reports :

Use the commands report_area and report_power for Area and Power

Reports respectively.

Design Optimization :

Enter the above shown command in the Terminal in order to run the Design

Optimization first Post-Route.

The Report generation is same as shown prior to Design Optimization.

Saving Database :

1. Saving Design => File → Save Design → Data Type : Innovus →

<DesignName>.enc → OK

2. Saving Netlist => File → Save → Netlist → <NetlistName>.v → OK

It is recommended to save Netlist and Design at every stage.

To restore a Design Data Base, type source <DesignName>.enc in the terminal.

3. Saving GDS => File → Save → GDS/OASIS → <FileName>.gds → OK

The GDS File is a Binary Format File which is not Readable and is fed to the

Fabrication unit with data of various layers used depicted in terms of

Geometrical Shapes.

Design and analysis of Full Adder

verilog code:

module fa(input a,b,cin,outputs,cout);

assign s=a^b^cin;

assign cout=(a&b)|(b&cin)|(a&cin);

endmodule

Test Bench:

module fa_tb();

reg a,b,cin;

wire s,cout;

fa dut(a,b,cin,s,cout);

initial

begin

cin=0;b=0;a=0;

#50 cin=0;b=0;a=0;

#50 cin=0;b=0;a=1;

#50 cin=0;b=1;a=0;

#50 cin=0;b=1;a=1;

#50 cin=1;b=0;a=0;

#50 cin=1;b=0;a=1;

#50 cin=1;b=1;a=0;

#50 cin=1;b=1;a=1;

end

endmodule

Design and analysis of 3 to 8 Decoder

Verilog code

module dec328(input A,B,C,G1,G2A,G2B, output [7:0] Y);

 reg [7:0] Y;

 always@(A,B,C,G1,G2A,G2B)

 begin

 if({G1,G2A,G2B}==3'b100)

 begin

 case({A,B,C})

 3'b000: Y=8'b11111110;

 3'b001: Y=8'b11111101;

 3'b010: Y=8'b11111011;

 3'b011: Y=8'b11110111;

 3'b100: Y=8'b11101111;

 3'b101: Y=8'b11011111;

 3'b110: Y=8'b10111111;

 3'b111: Y=8'b01111111;

endcase

 end

 else

 Y=8'b11111111;

 end

endmodule

Test bench:

module dec328_tb();

reg A,B,C,G1,G2A,G2B;

wire [7:0]Y;

dec328 uut(A,B,C,G1,G2A,G2B,Y);

initial begin

G1=0;G2A=0;G2B=0;#100;

G1=1;G2A=0;G2B=0;

A=0;B=0;C=0;#100;

A=0;B=0;C=1;#100;

A=0;B=1;C=0;#100;

A=0;B=1;C=1;#100;

A=1;B=0;C=0;#100;

A=1;B=0;C=1;#100;

A=1;B=1;C=0;#100;

A=1;B=1;C=1;#100;

end

endmodule

Design and analysis of 8-bit counter

Verilog code:

module counter(input CLK,CLR,E,output reg [7:0] count);

 always@(posedge CLK)

 begin

if(CLR)

count<=0;

 else if(E)

 if(count==4'b1111)

count<=0;

 else

count<=count+1;

 end

endmodule

Test bench :

module counter_tb();

 reg CLK,CLR,E;

 wire [7:0]count;

 counter uut(CLK,CLR,E,count);

 initial

 CLK=0;

 always #10 CLK=~CLK;

 initial begin

 CLR=1;

 #100 CLR=0;

 #100 E=1;

 end

endmodule

Design and analysis of m-bit shift register:

Verilog code:

module shiftregnbit(CLK,W,RESET,Q);

parameter m=4;

input CLK,W,RESET;

output [1:m]Q;

reg [1:m]Q;

integer k;

always@(posedge CLK or negedge RESET)

if(!RESET)

Q<=0;

else

begin

for(k=m;k>1;k=k-1)

Q[k]<=Q[k-1];

Q[1]<=W;

end

endmodule

Test bench:

module shiftregnbit_tb();

reg CLK,RESET,W;

wire [3:0]Q;

shiftregnbituut(CLK,W,RESET,Q);

initial

CLK=0;

always #10 CLK=~CLK;

initial begin

RESET=0;

#100 RESET=1;W=0;

#100 W=1;

#100

#100 W=0;

#100;

end

endmodule

	R20 Regulation
	LIST OF EXPERIMENTS
	IMPLEMENTATION OF 4X4 ARRAY MULTIPLIER
	Implementation of a 4-Bit Arithmetic & Logic Unit
	Implementation of Flip Flops: SR, JK,T,D
	1. Design of NMOS Inverter
	Tools used:
	Circuit:
	Procedure: Refer Annexure I
	Testbench:
	Simulation Results:
	Result:

	2. Design of CMOS Inverter
	Tools used:
	Circuit:
	Procedure: Refer Annexure I
	Testbench:
	Simulation Results:
	Result:

	3. Design of 2-input CMOS NOR gate
	Tools used:
	Circuit:
	SimulationResults:
	Result:

	4.Design of 2-input NAND Gate Design
	Tools used:
	Circuit:
	Simulation Results:
	Result:

	5.Design D- Flip Flop
	Tools used:
	Circuit:
	Simulation Results:
	Result:

